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SOME RESULTS IN THE THEORY OF QUASILINEAR SPACES
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Abstract. In this study, we present some new consequences and exercises of homogenized

quasilinear spaces. We also research on the some characteristics of the homogenized quasi-

linear spaces. Then, we introduce the concept of equivalent norm on a quasilinear space.

As in the linear functional analysis, we obtained some results with equivalent norms defined

in normed quasilinear spaces.
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1. Introduction

In the 1986, Aseev [1] presented the quasilinear spaces and normed quasilinear spaces

which are generalization of linear spaces and normed linear spaces, respectively. The biggest

difference between quasilinear space and linear space is that it has a partial order relation. He

gave some properties and some results which are quasilinear provisions of some conclusions

in classical linear functional analysis. Later, in [1], he presented the some new concepts in

normed quasilinear spaces. Further, in ([7], [10], [11], [12], [2], [9], [8] etc.), they have proposed

a series of new concepts and new results of quasilinear spaces. In [7], they introduced the

concept of proper quasilinear space which is a new notion of quasilinear functional analysis.
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In the same study, they presented concept of dimension of a quasilinear space which are

very meaningful to improvement of quasilinear algebra.

In the light of all these studies, in [6], we extended the notion of inner product spaces to

the quasilinear conditions. After giving this new definition, we obtained some new concepts

on inner product quasilinear spaces such as Hilbert quasilinear spaces and some orthogonality

concepts. Further, in [6], we examined the sample of quasilinear spaces ”IRn” interval space

and we presented the quasilinear spaces Is, Ic0, Il∞ and Il2. Also, we have studied to clarify

geometric properties of inner product quasilinear spaces in [13]. Furthermore, we tried to

enlarge the results in quasilinear functional analysis in [3], [4] and [5].

In this paper, we present some new conclusions of homogenized quasilinear space. Also, we

obtain some results with considerable advantages about features of homogenized quasilinear

spaces. Furthermore, we obtain some results with equivalent norms in a normed quasilinear

space.

2. Preliminaries

In this section, we give some definitions and results on quasilinear spaces given by Aseev

[1].

Definition 2.1. [1] A quasilinear space over a field R is a set Q with a partial order relation

”⪯” with the operations of addition Q × Q → Q and scalar multiplication R × Q → Q

satisfying the following conditions:

(Q1) q ⪯ q,

(Q2) q ⪯ z, if q ⪯ w and w ⪯ z,

(Q3) q = w, if q ⪯ w and w ⪯ q,

(Q4) q + w = w + q,

(Q5) q + (w + z) = (q + w) + z,

(Q6) there exists an element θ ∈ Q such that q + θ = q,

(Q7) α · (β · q) = (α · β) · q,

(Q8) α · (q + w) = α · q + α · w,

(Q9) 1 · q = q,

(Q10) 0 · q = θ,

(Q11) (α+ β) · q ⪯ α · q + β · q,

(Q12) q + z ⪯ w + v, if q ⪯ w and z ⪯ v,

(Q13) α · q ⪯ α · w, if q ⪯ w
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for every q, w, z, v ∈ Q and every α, β ∈ R.

The considerable instance which is a quasilinear space is the set of all closed intervals of

R with the relation ” ⊆ ”, algebraic sum operation M +N = {m+ n : m ∈ M, n ∈ N} and

the real-scalar multiplication λ ·M = {λm : m ∈ M} . We indicate this set by ΩC(R). Also,

the set of all compact subsets of R is Ω(R).

Let Q be a quasilinear space and W ⊆ Q. Then W is called a subspace of Q, whenever W

is a quasilinear space with the same partial order relation and the restriction of the operations

on Q to W . An element q ∈ Q is said to be symmetric if −q = q, where −q = (−1) · q, and

Qd denotes the set of all symmetric elements of Q.

Theorem 2.1. W is a subspace of a quasilinear space Q if and only if, for every, q, w ∈ W

and α, β ∈ R, α · q + β · w ∈ W [12].

Definition 2.2. [1] Let Q be a quasilinear space. A function ∥.∥Q : Q −→ R is named a

norm if the following circumstances hold:

(NQ1) ∥q∥Q > 0 if q ̸= 0,

(NQ2) ∥q + w∥Q ≤ ∥q∥Q + ∥w∥Q ,

(NQ3) ∥α · q∥Q = |α| · ∥q∥Q ,

(NQ4) if q ⪯ w, then ∥q∥Q ≤ ∥w∥Q ,

(NQ5) if for any ε > 0 there exists an element qε ∈ Q such that, q ⪯ w+qε and ∥qε∥Q ≤ ε

then q ⪯ w for any elements q, w ∈ Q and any real number α ∈ R.

Let Q be a normed quasilinear space. Hausdorff metric on Q is defined by the equality

hQ(q, w) = inf {r ≥ 0 : q ⪯ w + zr1, w ⪯ q + zr2, ∥zri ∥ ≤ r} .

Since q ⪯ w + (q − w) and w ⪯ q + (w − q), the quantity hQ(q, w) is well-defined for any

elements q, w ∈ Q, and

hQ(q, w) ≤ ∥q − w∥Q .

Example 2.1. Let X be a Banach space. A norm on Ω(X) is defined by

∥A∥Ω(X) = sup
a∈A

∥a∥X .

Then Ω(X) and ΩC(X) are normed quasilinear spaces. The Hausdorff metric is described as

ordinary:

hΩC(X)(A,B) = inf{r ≥ 0 : A ⊂ B + Sr(θ), B ⊂ A+ Sr(θ)},
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where Sr(θ) demonstrates a closed ball of radius r about θ ∈ X [1].

Definition 2.3. Let Q be a quasilinear space, M ⊆ Q and m ∈ M . The set

FM
m = {z ∈ Mr : z ⪯ m}

is called floor in M of m. If M = Q, then it is called floor of m and written Fm in place of

FM
m [7].

Definition 2.4. Let Q be a quasilinear space and M ⊆ Q. Then the set

FQ
M =

⋃
m∈M

FQ
m

is called floor in Q of M and is indicated by FQ
M [7].

Definition 2.5. Let Q be a quasilinear space. Q is called solid-floored quasilinear space

whenever

y = sup {m ∈ Qr : m ⪯ y}

for all y ∈ Q. Other than, Q is called non solid-floored quasilinear space [7].

Example 2.2. Ω(R) and ΩC(R) are solid-floored quasilinear space. However, singular sub-

space of ΩC(R) is non-solid floored quasilinear space. For example,

sup
{
m : m ∈ ((ΩC(R))s ∪ {0})r , m ⊆ y

}
= {0} ≠ y

for element y = [−2, 2] ∈ (ΩC(R))s∪{0} . Also, we can not find any element m ∈ ((ΩC(R))s ∪ {0})r
such that m ⊆ z for z = [1, 3] ∈ (ΩC(R))s ∪ {0} .

Definition 2.6. Let Q be a quasilinear space. Consolidation of floor of Q is the smallest

solid-floored quasilinear space Q̂ containing Q, that is, if there exists another solid-floored

quasilinear space W containing Q then Q̂ ⊆ W [13].

Q̂ = Q for some solid-floored quasilinear space Q. Besides, ̂ΩC(Rn)s = ΩC(Rn). For a

quasilinear space Q, the set

F Q̂
y =

{
z ∈

(
Q̂
)
r
: z ⪯ y

}
.

is the floor of Q in Q̂.
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Definition 2.7. Let Q be a quasilinear space. A mapping ⟨ , ⟩ : Q×Q → Ω(R) is called an

inner product on Q if for any q, w, z ∈ Q and α ∈ R the following conditions hold:

(IPQ1) If q, w ∈ Qr then ⟨q, w⟩ ∈ ΩC(R)r ≡ R,

(IPQ2) ⟨q + w, z⟩ ⊆ ⟨q, z⟩+ ⟨w, z⟩ ,

(IPQ3) ⟨α · q, w⟩ = α · ⟨q, w⟩ ,

(IPQ4) ⟨q, w⟩ = ⟨w, q⟩,

(IPQ5) ⟨q, q⟩ ≥ 0 for q ∈ Xr and ⟨q, q⟩ = 0 ⇔ q = 0,

(IPQ6) ∥⟨q, w⟩∥Ω(R) = sup
{
∥⟨a, b⟩∥Ω(R) : a ∈ F Q̂

q , b ∈ F Q̂
w

}
,

(IPQ7) if q ⪯ w and u ⪯ v then ⟨q, u⟩ ⊆ ⟨w, v⟩ ,

(IPQ8) if for any ε > 0 there exists an element qε ∈ Q such that q ⪯ w + qε and

⟨qε, qε⟩ ⊆ Sε (θ) then q ⪯ w.

A quasilinear space with an inner product is called an inner product quasilinear space [6].

Example 2.3. ΩC(R), is an example of inner product quasilinear space with

⟨A,B⟩ = {ab : a ∈ A, b ∈ B}.

For any two elements q, w of an inner product quasilinear space Q, we have

∥⟨q, w⟩∥Ω(R) ≤ ∥q∥Q ∥w∥Q .

Every inner product quasilinear space Q is a normed quasilinear space with the norm

described by

∥q∥ =
√
∥⟨q, q⟩∥Ω(R)

for every q ∈ Q.

Definition 2.8. An element q of the inner product quasilinear space Q is said to be orthogonal

to an element w ∈ Q if

∥⟨q, w⟩∥Ω(R) = 0.

From here, we can call that q and w are orthogonal and we show q ⊥ w [6].

An orthonormal set M ⊂ Q is an orthogonal set in Q whose elements have norm 1, that

is, for every q, w ∈ M

∥< q,w >∥Ω(R) =


0, q ̸= w

1, q = w .
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Definition 2.9. A⊥, is called the orthogonal complement of A and is showed by

A⊥ = {q ∈ Q : ∥⟨q, w⟩∥
Ω(R)

= 0, w ∈ A}.

For any subset A of an inner product quasilinear space Q, A⊥ is a closed subspace of Q

[6].

Example 2.4. Let X = (X1, X2, . . . , Xn) ∈ IRn and Y = (Y1, Y2, . . . , Yn) ∈ IRn. The

algebraic sum operation on IRn is defined by

X + Y = (X1 + Y1, X2 + Y2, . . . , Xn + Yn)

and multiplication by a real number α ∈ R is defined by

α ·X = (α ·X1, α ·X2, . . . , α ·Xn) .

If we will be assumed that the partial order on IRn is given by

X ≤ Y ⇔ Xi ⪯ Yi 1 ≤ i ≤ n

then IRn is quasilinear space according to the above processes. Furthermore, different two

norm on IRn are defined by

∥X∥ = ∥(X1, X2, . . . , Xn)∥ = sup
1≤i≤n

∥Xi∥IR

and

∥X∥2 =

(
n∑

i=1

∥Xi∥2IR

) 1
2

.

The quasilinear space IRn, with the inner product

⟨X,Y ⟩ =
n∑

i=1

⟨Xi, Yi⟩IR

is an inner product quasilinear space.

The quasilinear spaces IRn and ΩC(Rn) are different from each other. For instance; while

the set A =
{
(q, w) : q2 + w2 ≤ 1

}
is element of ΩC(R2), it is not element of IR2. Further,

B = ([1, 3] , {4}) ∈ IR2 but B /∈ ΩC(R2). Thus, IRn and ΩC(Rn) are two distinct instances

of quasilinear spaces.
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3. Main Results

In this section, we give the concept of homogenized quasilinear space by [5]. Then, we

give new findings about this concept.

Definition 3.1. Let Q be a quasilinear space. Q is called homogenized quasilinear space

if for all q ∈ Q and αβ ≥ 0 the following circumstance is satisfied:

(α+ β) · q = α · q + β · q.

Obviously, every vector space is a homogenized quasilinear space. However, the inverse is

false.

Theorem 3.1. ΩC(Q) is a homogenized quasilinear space for every normed quasilinear space

Q. However, Ω(Q) is not homogenized quasilinear space.

Proof. Since ΩC(Q) is a quasilinear space, we have (α+ β) · A ⊆ α · A+ β · A from

(Q11) for every A ∈ ΩC(Q). Now, we only prove the converse. Let a ∈ α ·A+β ·A for every

A ∈ ΩC(Q). Then, we obtain

a = α · q + β · w

for a q, w ∈ A. From here, we can write

a = (α+ β)

[
α

α+ β
· q + β

α+ β
· w
]
.

If t = α
α+β and k = β

α+β , there is two different cases since αβ ≥ 0:

i) If α ≤ α+ β for α, β ∈ R+, then we get α
α+β ≤ 1 and 0 ≤ α

α+β .

ii) If α+ β ≤ α for α, β ∈ R−, then we get 1 ≥ α
α+β and 0 ≤ α

α+β .

From i) and ii), we obtain 0 ≤ t ≤ 1. Further, clearly t+k = 1. According to the definition

of convexity on quasilinear spaces, we get α
α+β · q + β

α+β · w ∈ A. So, we show that

a = (α+ β) · z ∈ A

for a z ∈ A.

Example 3.1. Ω (R) is a non-homogenized quasilinear space. Consider the element A =

{1, 2, 3} ∈ Ω (R). Clearly, 2·A = {2, 4, 6} . But A+A = {2, 3, 4, 5, 6}. Therefore 2·A ̸= A+A

for α = 1 and β = 1. This shows us that Ω (R) is not a homogenized quasilinear space.

Theorem 3.2. Let Q be a homogenized inner product quasilinear space and q ∈ Qd. Then

there exists at least one w ∈ X such that q = w − w.
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Proof. We know that (α+ β)·w = α·w+β ·w for every w ∈ Q and α, β ∈ R+. Further

q = −q and q = q since q is a symmetric element of Q. Same time, we get q + q = q − q.

From here, we obtain q = q
2 − q

2 since 2 · q = q − q. This complete the proof.

Proposition 3.1. Let Q be a homogenized quasilinear space and q ∈ Q. Then Fq is convex

subset of Q.

Proof. Let Q be a homogenized quasilinear space. From Definition 2.3, we have

Fq = {a ∈ Qr : a ⪯ q}

for a q ∈ Q. Thus, we obtain

a ⪯ q and b ⪯ q

for every a, b ∈ Fq. From (Q13), we have

γ · a ⪯ γ · q and (1− γ) · b ⪯ (1− γ) · q

for every 0 ⪯ γ ⪯ 1. Hence,

γ · a+ (1− γ) · b ⪯ γ · q + (1− γ) · q.

Since, Q is a homogenized quasilinear space,

γ · q + (1− γ) · q = (γ + 1− γ) · q = q

for every 0 ⪯ γ ⪯ 1. Therefore, we get

γ · a+ (1− γ) · b ⪯ q.

Thus, γ · a+ (1− γ) · b ∈ Fq.

Remark 3.1. Floor of an element of an inner product quasilinear space Q is convex if and

only if this inner product quasilinear space Q is homogenized. If Q is not homogenized in the

Proposition 3.1, then Fq is not convex since (α+ β) · q ̸= α · q + β · q.

Example 3.2. IRn is a homogenized inner product quasilinear space. In [6], we showed that

IRn is an inner product quasilinear space with

⟨X,Y ⟩ =
n∑

i=1

⟨Xi, Yi⟩IR .
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For every X ∈ IRn and αβ ≥ 0, we can write

(α+ β) ·X = (α+ β) · (X1, X2, . . . , Xn)

= ((α+ β) ·X1, (α+ β) ·X2, . . . , (α+ β) ·Xn) .

Then, we obtain

(α+ β) ·X = (α ·X1 + β ·X1, α ·X2 + β ·X2, . . . , α ·Xn + β ·Xn)

= (α ·X1, α ·X2, . . . , α ·Xn) + (β ·X1, β ·X2, . . . , β ·Xn)

= α ·X + β ·X

since IR is a homogenized quasilinear space.

Example 3.3. All interval sequence spaces Is, all bounded interval sequence spaces Il∞ =

{X = (Xn) ∈ IR∞ : |(Xn)| ≤ ∞} and all convergent interval sequence spaces

Ic0 = {X = (Xn) ∈ IR∞ : (Xn) → 0}

are further example of homogenized quasilinear spaces.

Before giving the equivalent norms on the qasilinear spaces, we will give an example to

cartesian product of quasilinear spaces.

Example 3.4. Let Q be the Cartesian product of quasilinear spaces Q1, Q2, ..., Qn, that is,

Q = Q1 ×Q2 × ...×Qn. The space Q is a quasilinear space with the algebraic sum operation

(q1, q2, ..., qn) + (w1, w2, ..., wn) = (q1 + w1, q2 + w2 + ...+ qn + wn) ,

real scalar multiplication

α · (q1, q2, ..., qn) = (α · q1, α · q2, ..., α · qn)

and order relation

(q1, q2, ..., qn) ⪯ (w1, w2, ..., wn) ⇔ q1 ⪯ w1, q2 ⪯ w2, ..., qn ⪯ wn

for every (q1, q2, ...qn) , (w1, w2, ...wn) ∈ Q1 ×Q2 × ...×Qn = Q.

Example 3.5. Let Q and W be the normed quasilinear spaces with ∥·∥1 and ∥·∥2 , respectively.

Define Q×W = {z = (q, w) : q ∈ Q and w ∈ W} . The functions

∥z∥ = max (∥q∥1 , ∥w∥2) (3.1)
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∥z∥0 = ∥q∥1 + ∥w∥2 (3.2)

defines norms on Q×W. Then Q×W is normed quasilinear space.

Proposition 3.2. Let ∥·∥1 be a norm on quasilinear space Q and ∥·∥2 be a norm on quasi-

linear space W . From Example 3.5, we have Z = Q ×W is normed quasilinear space with

norms (3.1) and (3.2). Let {(qn, wn)} be sequence in Q ×W . The following conditions are

satisfied:

i) The sequence {(qn, wn)} is convergent to {(q, w)} in Z if and only if {qn} is convergent

to q in Q and {wn} is convergent to w in W.

ii) The sequence {(qn, wn)} is Cauchy sequence in Z if and only if {qn} is Cauchy sequence

in Q and {wn} is Cauchy sequence in W.

Proof. Suppose that (qn, wn) → (q, w) ∈ Z. Then corresponding to each ϵ > 0, ∃

n0 ∈ N such that the following inequalities hold for n > n0 :

(qn, wn) ⪯ (q, w) + aϵ1,n, (q, w) ⪯ (qn, wn) + aϵ2,n,
∥∥aϵi,n∥∥ ≤ ϵ.

Here, aϵ1,n =
(
bϵ1,n, c

ϵ
1,n

)
and aϵ2,n =

(
bϵ2,n, c

ϵ
2,n

)
. Since Z is quasilinear space, we get

qn ⪯ q + bϵ1,n, q ⪯ qn + bϵ2,n

and

wn ⪯ w + cϵ1,n, w ⪯ wn + cϵ2,n.

Also, since
∥∥∥aϵi,n∥∥∥ = max

(∥∥∥bϵi,n∥∥∥
1
,
∥∥∥cϵi,n∥∥∥

2

)
≤ ϵ or

∥∥∥aϵi,n∥∥∥
0
=
∥∥∥bϵi,n∥∥∥

1
+
∥∥∥cϵi,n∥∥∥

2
≤ ϵ, we obtain∥∥∥bϵi,n∥∥∥

1
≤ ϵ and

∥∥∥cϵi,n∥∥∥
2
≤ ϵ according to (3.1) and (3.2). This proves that the sequence {qn}

is convergent to q in Q and the sequence {wn} is convergent to w in W. The opposite can be

shown in a similar way.

Let {(qn, wn)} be a Cauchy sequence in Z. For an arbitrary ϵ > 0 there exists a n0 ∈ N

such that

(qn, wn) ⪯ (qm, wm) + aϵ1,n, (qm, wm) ⪯ (qn, wn) + aϵ2,n,
∥∥aϵi,n∥∥ ≤ ϵ

for all m,n > n0, and thus also

qn ⪯ qm + bϵ1,n, qm ⪯ qn + bϵ2,n

and

wn ⪯ wm + cϵ1,n, wm ⪯ wn + cϵ2,n.
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Further, we obtain
∥∥∥bϵi,n∥∥∥

1
≤ ϵ and

∥∥∥cϵi,n∥∥∥
2
≤ ϵ for two norms defined in (3.1) and (3.2) since∥∥∥aϵi,n∥∥∥ ≤ ϵ. Now, let {qn} is Cauchy sequence in Q and {wn} is Cauchy sequence in W. Then

for any ϵ > 0 there exists a n0 ∈ N such that

qn ⪯ qm + bϵ1,n, qm ⪯ qn + bϵ2,n,
∥∥bϵi,n∥∥1 ≤ ϵ

and

qn ⪯ qm + cϵ1,n, qm ⪯ qn + cϵ2,n,
∥∥cϵi,n∥∥2 ≤ ϵ

for all n,m > n0. Since Q and W are quasilinear space, we get

(qn, wn) ⪯
(
qm + bϵ1,n, wm + cϵ1,n

)
= (qm, wm) +

(
bϵ1,n, c

ϵ
1,n

)
,

(qm, wm) ⪯
(
qn + bϵ2,n, wn + cϵ2,n

)
= (qn, wn) +

(
bϵ2,n, c

ϵ
2,n

)
.

Consequently, we obtain
∥∥∥(bϵi,n, cϵi,n)∥∥∥ ≤ ϵ because

∥∥∥bϵi,n∥∥∥
1
≤ ϵ and

∥∥∥cϵi,n∥∥∥
2
≤ ϵ. This com-

pletes the proof.

Theorem 3.3. Let Q1, Q2, ..., Qn be Banach quasilinear spaces over the same scalar field R

with norm ∥·∥i (1 ≤ i ≤ n), respectively. Then the product space Q = Q1 ×Q2 × ...×Qn is

Banach quasilinear space with norm

∥q∥ = max
1⪯k⪯n

(∥qk∥k) .

Proof. Let qk =
((
q11, q

1
2, ..., q

1
n

)
,
(
q21, q

2
2, ..., q

2
n

)
, ...,

(
qk1 , q

k
2 , ..., q

k
n

)
, ...
)
be a Cauchy

sequence in Q. For ϵ > 0, there exists a number n0 such that for k,m > n0 there are

elements aϵ1,n, b
ϵ
2,n ∈ Q for which(

qk1 , q
k
2 , ..., q

k
n

)
⪯ (qm1 , qm2 , ..., qmn ) + (ai)

ϵ
1,k,m ,

(qm1 , qm2 , ..., qmn ) ⪯
(
qk1 , q

k
2 , ..., q

k
n

)
+ (ai)

ϵ
2,k,m ,∥∥∥(ai)ϵj,k,m∥∥∥ ≤ ϵ.

From here, we get∥∥∥(qk1 , qk2 , ..., qkn)− (qm1 , qm2 , ..., qmn )
∥∥∥ = max

1⪯i⪯n

∥∥∥qki − qmi

∥∥∥
i
→ 0

(k,m → ∞). Hence,
∥∥qki − qmi

∥∥
i
→ 0 for every 1 ≤ i ≤ n when k,m → ∞. This proves that

the
(
qki
)
is a Cauchy sequence in Qi for every 1 ≤ i ≤ n. Since Qi is Banach,

(
qki
)
converges

to a qi in Qi, (k → ∞) . Note that this implies that for ϵ > 0 there exists a n0 such that for

k > n0 :

qki ⪯ qi + (ai)
ϵ
1,k , qi ⪯ qki + (ai)

ϵ
2,k ,

∥∥∥(ai)ϵj,k∥∥∥
i
≤ ϵ
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for every 1 ⪯ i ⪯ n. Since∥∥∥qk − q
∥∥∥ =

∥∥∥(qk1 , qk2 , ..., qkn)− (q1, q2, ..., qn)
∥∥∥

= max
1⪯i⪯n

(∥∥∥qki − qi

∥∥∥
i

)
≤ ϵ,

we have qk → q ∈ Q, (k → ∞) . Consequently, Q is Banach quasilinear space.

Proposition 3.3. If Q1, Q2, ..., Qn are solid-floored quasilinear space then Q = Q1 × Q2 ×

...×Qn is solid-floored quasilinear space.

Proof. Let Qi is solid-floored quasilinear space for every 1 ≤ i ≤ n. From the

Definition 2.5, we have

qi = sup {wi ∈ (Qi)r : wi ⪯ qi}

for every qi ∈ Qi. Since Q is a quasilinear space, we obtain

(w1, w2, ..., wn) ⪯ (q1, q2, ..., qn)

such that (w1, w2, ..., wn) = w ∈ Qr and (q1, q2, ..., qn) = q ∈ Q. From here, we have

q = sup {(w1, w2, ..., wn) ∈ Qr : (w1, w2, ..., wn) ⪯ (q1, q2, ..., qn)} .

Now, we introduce the concept of equivalent norms on the same quasilinear space. Also,

we concentrate on the Hausdorff metric properties for two equivalent norms that are defined

on a quasilinear space.

Definition 3.2. A norm ∥·∥ on a normed quasilinear space Q is said to be equivalent to a

norm ∥·∥0 on Q if there are positive real numbers a and b such that for all q ∈ Q we have

a ∥q∥0 ≤ ∥q∥ ≤ b ∥q∥0 .

Example 3.6. The following norms on IR2 = {(X1, X2) : X1, X2 ∈ ΩC (R)} are equivalent:

∥(x, y)∥ = ∥x∥+ ∥y∥

∥(x, y)∥1 = max {∥x∥ , ∥y∥} .

Theorem 3.4. Let Q be a quasilinear space and ∥·∥ and ∥·∥1 be equivalent norms on Q. The

sequence {qn} is convergent to q in normed quasilinear space (Q, ∥·∥) if and only if {qn} is

convergent to q in (Q, ∥·∥1) .
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Proof. Suppose that {qn} → q in normed quasilinear space (Q, ∥·∥) . Then for every

ϵ > 0 there exists an N ∈ N such that:

qn ⪯ q + qϵ1,n, q ⪯ qn + qϵ2,n,
∥∥qϵi,n∥∥ ≤ ϵ

M

∀n ≥ N and M ∈ N+. Since the norms ∥·∥ and ∥·∥1 are equivalent, we have∥∥qϵi,n∥∥1 ≤ M
∥∥qϵi,n∥∥ ≤ ϵ.

Hence {qn} → q in (Q, ∥·∥1) .

Conversely, let {qn} → q in (Q, ∥·∥1). Then for every ϵ > 0 there exists an index N such

that

qn ⪯ q + qϵ1,n, q ⪯ qn + qϵ2,n,
∥∥qϵi,n∥∥1 ≤ ϵ

∀n ≥ N. Since the norms are equivalent, we get

m ∥q∥ ≤ ∥q∥1 ≤ ϵ.

Hence, {qn} is convergent to q in (Q, ∥·∥) .

Theorem 3.5. Let Q be a quasilinear space and ∥·∥ and ∥·∥1 be equivalent norms on Q. The

sequence {qn} is Cauchy sequence in normed quasilinear space (Q, ∥·∥) if and only if {qn} is

Cauchy sequence in (Q, ∥·∥1) .

Proof. Let {qn} be a Cauchy sequence in (Q, ∥·∥) . For an arbitrary ϵ > 0 there exists

a n0 ∈ N such that

qn ⪯ qm + aϵ1,n, qm ⪯ qn + aϵ2,n,
∥∥aϵi,n∥∥ ≤ ϵ

M

for all n,m > n0. Similar way to the above theorem, we obtain
∥∥∥aϵi,n∥∥∥

1
≤ M

∥∥∥aϵi,n∥∥∥ ≤ ϵ. This

proves that the sequence {qn} is Cauchy sequence in (Q, ∥·∥1). The proof of opposite can be

proved by similar way.

Theorem 3.6. Let Q be a quasilinear space and ∥·∥ and ∥·∥1 be equivalent norms on Q.

(Q, ∥·∥) is complete if and only if (Q, ∥·∥1) is complete.

Proof. Let (Q, ∥·∥) be a complete and ∥·∥ and ∥·∥1 be equivalent norms on Q. If {qn}

is a Cauchy sequence in (Q, ∥·∥1) , then for an arbitrary ϵ > 0 there exists a n0 ∈ N such that

qn ⪯ qm + aϵ1,n, qm ⪯ qn + aϵ2,n,
∥∥aϵi,n∥∥ ≤ ϵ
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for all n,m > n0. From Theorem 3.5, we have {qn} is a Cauchy sequence in (Q, ∥·∥1). We

obtain qn → q ∈ Q from the completeness of (Q, ∥·∥) . From Theorem 3.4, we get {qn, n ∈ N}

is convergent to q in (Q, ∥·∥1) which proves completeness of (Q, ∥·∥1) . The converse can be

proved similarly.

Corollary 3.1. If two norms ∥·∥ and ∥·∥0 on a quasilinear space Q are equivalent, then

∥qn − q∥ → 0 if and only if ∥qn − q∥0 → 0 for any sequence (qn) in Q and any q ∈ Q.

If Q is finite dimensional normed quasilinear space, then any two norms on Qr are equiv-

alent since Qr is a normed linear subspace of Q.

4. Conclusion

In this paper, we define the notion of homogenized quasilinear space as a new concept in

quasilinear spaces. We also research on the some properties of the homogenized quasilinear

spaces. Then, we introduce the concept of equivalent norm on a quasilinear space. As in the

linear functional analysis, we obtained some results related to equivalent norms defined in

normed quasilinear spaces.
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Abstract. In this study, we obtain both the asymptotically stability and the numerical

solution of first order neutral type differential equation with multiple retarded arguments.

We first obtain sufficient specific conditions expressed in terms of linear matrix inequality

(LMI) using the Lyapunov method to establish the asymptotic stability of solutions. Sec-

ondly, we use the differential transform method (DTM) to show numerical solutions. Finally,

two examples are presented to demonstrate the effectiveness and applicability of proposed

methods by Matlab and an appropriate computer program.
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1. Introduction

The different particular cases of delay differential equations have been searched by many

researchers for the past few decades. Recently, it can be seen from the related literature

that qualitative properties of various neutral differential equations have been investigated by

many authors and the researchers have obtained many interesting and important results on

some qualitative properties such as stability, exponentially stability, asymptotically stability,

oscillation, non-oscillations of solutions and etc.(see,[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]).

DTM, which is a semi-analytical-numerical technique, is based on the Taylor series ex-

pansion. The concept of method was first introduced by Pukhov [15] to solve linear and

nonlinear problems in physical processes, and by Zhou [16] to study electrical circuits. This
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method is advantageous in obtaining numerical, analytical and exact solutions of ordinary

and partial differential equations it has been widely studied and applied in recent years

(see,[17, 18, 19, 20, 21, 22, 23, 24, 25]). According to the current techniques in the literature,

DTM is a reliable method that requires less work and does not require linearization.

In this study, we consider the following first order neutral type differential equation with

multiple retarded arguments:

d

dt
[x(t) + p(t)x(t− τ)] + a(t)f(x(t)) + b(t)g(x(t− σ)) + c(t)

∫ t

t−δ
x(s)ds = 0, (1.1)

where p(t), a(t), b(t), c(t) : [t0,∞) → [0,∞), t0 ≥ 0, and f, g : ℜ → ℜ with f(0) = 0, g(0) =

0 are continuous functions on their respective domains;τ, σ and δ are positive real constants.

For each solution x(t) of equation 1.1, we assume the existence following initial condition:

x(θ) = Φ(θ), θ ∈ [t0 −H, t0],

where Φ ∈ C([t0 −H, t0], R), H = max{τ, σ, δ}.

Define

h1(x) =


h(x)
x , x ̸= 0

dh(0)
dt , x = 0

(1.2)

and

g1(x) =


g(x)
x , x ̸= 0

dg(0)
dt , x = 0.

(1.3)

The main purpose and contribution of this work can be summarized as follows aspects:

i. This research on the stability of certain neutral type differential equation and their

numerical solutions is still at the stage of developing. Therefore, we propose a novel

stability criterion for further improvements.

ii. The proof technique for the asymptotically stability of the equation considered in this

study includes the Lyapunov function method and the LMI technique. Also, DTM

is used to obtain numerical solutions of the equation considered.

iii. The simulations showing the behaviors of the solutions of the equation addressed by

applying the Lyapunov method and the numerical solutions of the equation addressed

using DTM show that the proposed methods are useful and efficient.
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2. Preliminaries and stability results

We suppose that there exist nonnegative constants ai, bi, ci,mi, ni (i = 1, 2) and p1 such

that for t ≥ 0,

a1 ≤ a(t) ≤ a2, b1 ≤ b(t) ≤ b2, c1 ≤ c(t) ≤ c2, (2.4)

|p(t)| ≤ p1 < 1, m1 ≤ f1(x) ≤ m2, n1 ≤ g1(x) ≤ n2. (2.5)

For convenience, define the operator D : ℜ → ℜ as

D(xt) = x(t) + p(t)x(t− τ)− α

∫ t

t−τ
x(s)ds− β

∫ t

t−σ
x(s)ds,

where α ve β are positive scalars to be chosen later. From 1.2 and 1.3, equation 1.1 can be

readily rewritten as follows for t ≥ 0,

d

dt
[x(t) + p(t)x(t− τ)− α

∫ t

t−τ
x(s)ds− β

∫ t

t−σ
x(s)ds] = −(f1(x)a(t) + α+ β)x(t)

+αx(t− τ) + βx(t− σ)− g1(x(t− σ))b(t)x(t− σ)− c(t)

t∫
t−δ

x(s)ds. (2.6)

Theorem 2.1. Let ai, bi, ci, mi and ni (i = 1, 2) be nonnegative constants. Then trivial

solution of neutral type differential equation 2.6 is asymptotically stability if the operator D

is stable and there exist positive constants τ, σ, δ, α, β and λj (j = 1, 2, . . . , 5) such that

Π =



Π11 Π12 β − n1b1 Π14 Π15 −c1

∗ Π22 Π23 −α2 −αβ −p1c1

∗ ∗ −λ2 Π34 Π35 0

∗ ∗ ∗ −λ3 0 αc2

∗ ∗ ∗ ∗ −λ4 βc2

∗ ∗ ∗ ∗ ∗ −λ5


< 0, (2.7)

where Π11 = −2(m1a1 +α+ β) + λ1 + λ2 + λ3τ
2 + λ4σ

2 + λ5δ
2,Π12 = α− (m1a1 +α+ β)p1,

Π14 = m2a2α + α2 + αβ,Π15 = m2a2β + αβ + β2,Π22 = 2αp1 − λ1,Π23 = βp1 − n1b1p1,

Π34 = −αβ + αn2b2,Π35 = −β2 + βn2b2 and the symbols “∗” shows the elements below the

main diagonal of the symmetric matrix Π .
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Proof. Consider the appropriate Lyapunov functional as

V (t) =[D(xt)]
2 + λ1

∫ t

t−τ
x2(s)ds+ λ2

∫ t

t−σ
x2(s)ds+ λ3τ

∫ t

t−τ
(τ − t+ s)x2(s)ds

+ λ4σ

∫ t

t−σ
(σ − t+ s)x2(s)ds+ λ5δ

∫ t

t−δ
(δ − t+ s)x2(s)ds,

where D(xt) = x(t) + p(t)x(t− τ)− α
t∫

t−τ

x(s)ds− β
t∫

t−σ

x(s)ds.

When the time derivative of V (t) along the trajectory of equation 2.6 are calculate, we

obtain

dV

dt
=2[x(t) + p(t)x(t− τ)− α

∫ t

t−τ
x(s)ds− β

∫ t

t−σ
x(s)ds]

× [−(f1(x)a(t) + α+ β)x(t) + αx(t− τ) + βx(t− σ)

− g1(x(t− σ))b(t)x(t− σ)− c(t)

∫ t

t−δ
x(s)ds] + λ1[x

2(t)− x2(t− τ)]

+ λ2[x
2(t)− x2(t− σ)] + λ3τ

2x2(t)− λ3τ

∫ t

t−τ
x2(s)ds

+ λ4σ
2x2(t)− λ4σ

∫ t

t−σ
x2(s)ds+ λ5δ

2x2(t)− λ5δ

∫ t

t−δ
x2(s)ds

=(−2f1(x)a(t)− 2α− 2β + λ1 + λ2 + λ3τ
2 + λ4σ

2 + λ5δ
2)x2(t)

+ 2αx(t)x(t− τ) + 2βx(t)x(t− σ)− 2g1(x(t− σ))b(t)x(t)x(t− σ)

− 2c(t)x(t)

∫ t

t−δ
x(s)ds− 2(f1(x)a(t) + α+ β)p(t)x(t)x(t− τ)

+ 2αp(t)x2(t− τ) + 2βp(t)x(t− τ)x(t− σ)

− 2g1(x(t− σ))b(t)p(t)x(t− τ)x(t− σ)− 2p(t)c(t)x(t− τ)

∫ t

t−δ
x(s)ds

+ 2(f1(x)a(t) + α+ β)αx(t)

∫ t

t−τ
x(s)ds− 2α2x(t− τ)

∫ t

t−τ
x(s)ds

− 2αβx(t− σ)

∫ t

t−τ
x(s)ds+ 2αg1(x(t− σ))b(t)x(t− σ)

∫ t

t−τ
x(s)ds

+ 2αc(t)

∫ t

t−τ
x(s)ds

∫ t

t−δ
x(s)ds+ 2(f1(x)a(t) + α+ β)βx(t)

∫ t

t−σ
x(s)ds

− 2αβx(t− τ)

∫ t

t−σ
x(s)ds− 2β2x(t− σ)

∫ t

t−σ
x(s)ds

+ 2βg1(x(t− σ))b(t)x(t− σ)

∫ t

t−σ
x(s)ds+ 2βc(t)

t∫
t−σ

x(s)ds

∫ t

t−δ
x(s)ds
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− λ1x
2(t− τ)− λ2x

2(t− σ)− λ3τ

t∫
t−τ

x2(s)ds− λ4σ

t∫
t−σ

x2(s)ds

− λ5δ

∫ t

t−δ
x2(s)ds.

By using hölder inequality we can easily see that

τ

∫ t

t−τ
x2(s)ds ≥

(∫ t

t−τ
x(s)ds

)2

,

σ

∫ t

t−σ
x2(s)ds ≥

(∫ t

t−σ
x(s)ds

)2

,

δ

∫ t

t−δ
x2(s)ds ≥

(∫ t

t−δ
x(s)ds

)2

.

Taking into account conditions 2.4 and 2.5, we have

dV

dt
≤(−2m1a1 − 2α− 2β + λ1 + λ2 + λ3τ

2 + λ4σ
2 + λ5δ

2)x2(t)

+ [2α− 2(m1a1 + α+ β)p1]x(t)x(t− τ) + (2β − 2n1b1)x(t)x(t− σ)

− 2c1x(t)

t∫
t−δ

x(s)ds+ (2αp1 − λ1)x
2(t− τ)

+ (2βp1 − 2n1b1p1)x(t− τ)x(t− σ)− 2p1c1x(t− τ)

∫ t

t−δ
x(s)ds

+ 2(m2a2α+ α2 + αβ)x(t)

∫ t

t−τ
x(s)ds− 2α2x(t− τ)

∫ t

t−τ
x(s)ds

− (2αβ − 2αn2b2)x(t− σ)

∫ t

t−τ
x(s)ds+ 2αc2

∫ t

t−τ
x(s)ds

∫ t

t−δ
x(s)ds

+ 2βc2

∫ t

t−σ
x(s)ds

∫ t

t−δ
x(s)ds+ 2(m2a2β + αβ + β2)x(t)

∫ t

t−σ
x(s)ds

− 2αβx(t− τ)

∫ t

t−σ
x(s)ds− λ2x

2(t− σ)− (2β2 − 2βn2b2)x(t− σ)

∫ t

t−σ
x(s)ds

− λ3

(∫ t

t−τ
x(s)ds

)2

− λ4

(∫ t

t−σ
x(s)ds

)2

− λ5

(∫ t

t−δ
x(s)ds

)2

.

The last estimate implies that

dV

dt
≤ ξT (t)Πξ(t),

where ξT (t) =

[
x(t) x(t− τ) x(t− σ)

t∫
t−τ

x(s)ds
t∫

t−σ

x(s)ds
t∫

t−δ

x(s)ds

]
and Π is de-

fined in 2.7. Thus, 2.7 implied that there exists a positive constant µ > 0 such that

dV
dt ≤ −µ ∥D(xt)∥ . Therefore, equation 2.6 is asymptotically stable according to [[8],Theorem

8.1, pp. 292–293]. This completes the proof.
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Example 2.1. Consider neutral differential equation 2.6 with

a1 = a2 = 1, b1 = b2 = 0.5, c1 = c2 = 0,m1 = m2 = 2, n1 = n2 = 0.4, |p(t)| ≤ p1 = 0.25 < 1,

(2.8)

τ = 0.2, σ = 0.4., δ = 0.3, α = 0.1, β = 0.3, λ1 = 1.6, λ2 = λ3 = 1.2, , λ4 = 0.8, λ5 = 1.5.

(2.9)

Under the above assumptions, by solving matrix inequality 2.7 using Matlab, we found that

the all eigenvalues of this matrix are -0.3125, -1.1539, -1.1931, -1.4085, -1.5000 and -2.3669.

As a result, it is clear that all the conditions of Theorem 2.1 hold. This discussion implies

that the zero solution of equation 2.6 is asymptotically stable.

Figure 1. The simulation of the Example 2.1.

3. DTM and Numerical Experiment

The theory of DT can be found in [15, 16]. In this research paper, we will explain briefly.

The DT of function x(t) is defined as

X (k) =
1

k!

[
dkx (t)

dtk

]
t=0

, (3.10)

where x(t)is the original function and X(k) is the transformed function.

Differential inverse transform of X(k) is defined as

x (t) =

∞∑
k=0

tk

k!

[
dkx (t)

dtk

]
t=0

. (3.11)
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From 3.10 and 3.11, if the function x(t) can be expressed in a finite series as follows

x (t) =
∞∑
k=0

X (k) tk = X (0) +X (1) t+X (2) t2 + . . . , (3.12)

then it is called series solution of the DTM.

The following fundamental theorems can be easily deduced from equations 3.10 and 3.11

(also see,[17],[20]).

Theorem 3.1. If x (t) = dx(t)
dt ,then X (k) = (k+1)!

k! X (k + 1) = (k + 1)X (k + 1) .

Theorem 3.2. If x(t) = αx(t), then X(k) = αX(k),where α is a constant.

Theorem 3.3. If x(t) = x(t− a), a > 0 and reel constant, then

X (k) =

N∑
i=k

(−1)i−k

 i

k

 ai−kX (i) .

Theorem 3.4. If d
dtx (t− a) , then X (k) = (k + 1)

N∑
i=k+1

(−1)i−k−1

 i

k + 1

 ai−k−1X (i) .

Theorem 3.5. If x (t) =
∫ t
t0
x (s)ds, then X (k) = X(k−1)

k , k ≥ 1, X (0) = 0.

Now, we demonstrate potentiality, advantages and effectiveness of our method on an

example.

Example 3.1. Under initial condition x (0) = 2.5, we consider the first order neutral differ-

ential equation 2.6 with 2.8 and 2.9. Taking into account Theorem 3.1 - 3.5, applying DTM

on both sides of equation 3.10 and condition 3.11, we obtain the following recurrence relation

X (0) =2.5,

(k + 1)X (k + 1) =[−0.25 (k + 1)

N∑
i=k+1

(−1)i−k−1

 i

k + 1

 0.2i−k−1X (i)− 2X (k)

− 0.2
N∑
i=k

(−1)i−k

 i

k

 0.4i−kX (i)], k = 0, 1, ..., 6.

Using this recurrence relation, the following series coefficients X(k) can be obtained.

For N = 4,

X(1) =-4.256423713, X(2)=4.173891756, X(3)=-3.190591724, X(4)=2.211301195,

X(5) =-1.326780717, X(6)=0.4422602390, X(7)=-0.1263600683, k = 0, 1, ..., 6.
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For N = 6,

X(1) =-4.256931168, X(2)=4.169113047, X(3)=-3.134489650, X(4)=2.052537892,

X(5) =-1.272263766, X(6)=0.7624052530, X(7)=-0.3703111229, k = 0, 1, ..., 6.

For N = 8,

X(1) =-4.256957370, X(2)=4.169240023, X(3)=-3.133772360, X(4)=2.045844921,

X(5) =-1.257197863, X(6)=0.7759998430, X(7)=-0.4899948359, k = 0, 1, ..., 6.

Finally, using above mentioned relations, taking N = 4, 6, 8 and using equation 3.12,

we reach approximate solutions of equation 2.6 with 7 iterations as follows:

N = 4,

xDTM (t) =2.5− 4.256423713t+ 4.173891756t2 − 3.190591724t3 + 2.211301195t4

− 1.326780717t5 + 4.422602390t6 − 1.263600683t7,

N = 6,

xDTM (t) =2.5− 4.256931168t+ 4.169113047t2 − 3.134489650t3 + 2.052537892t4

− 1.272263766t5 + 7.624052530t6 − 3.703111229t7,

N = 8,

xDTM (t) =2.5− 4.256957370t+ 4169240023t2 − 3.133772360t3 + 2.045844921t4

− 1.257197863t5 + 7.759998430t6 − 4.899948359t7.

As a result, it is seen that in the cases of N = 4, N = 6 and N = 8, our numerical

results are almost the same.
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Figure 2. Comparison between approximate solutions using DTM.

Table 1. Comparison of numerical results obtained with DTM.

t N = 4 N = 6 N = 8

0.0 2.5 2.5 2.5

0.1 2.113114246 2.113056779 2.113055630

0.2 1.793286393 1.793223362 1.793222389

0.3 1.527559403 1.527518365 1.527507432

0.4 1.305682872 1.305711365 1.305609636

0.5 1.119104674 1.119546373 1.118984564

0.6 0.960089977 0.961954349 0.959727281

0.7 0.820903961 0.826068104 0.819026077

0.8 0.692994495 0.703852936 0.684940092

0.9 0.566111176 0.584166389 0.539253944

1.0 0.427296967 0.450060485 0.353162358

4. Conclusions

In this study, we first derived some novel sufficient conditions to prove the asymptotic

stability of solutions the first order neutral type differential equation. Subsequently, using
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DTM, we obtained numerical approximations for different N ve t by an appropriate computer

program. We constructed the Table 1 to make a comparison between the numerical results

for N = 4, N = 6 and N = 8. By Matlab and an appropriate computer program, we

provided two examples to show the effectiveness of proposed method. When the simulations

of Example 2.1 and Example 3.1 are examined, the obtained results shows that the proposed

methods are useful and applicable. As a suggestion, the techniques and methods presented

for equation 1.1 can be improved with different situational or time-dependent delays.

References

[1] Agarwal, R. P., Grace, S. R. (2000). Asymptotic stability of certain neutral differential equations. Math.

Comput. Modelling, 31(8-9), 9–15.

[2] Altun, Y. (2019). A new result on the global exponential stability of nonlinear neutral volterra integro-

differential equation with variable lags. Math. Nat. Sci., 5, 29–43.

[3] Altun Y. (2019). Further results on the asymptotic stability of Riemann–Liouville fractional neutral sys-

tems with variable delays. Adv. Difference Equ., 437, 1-13.

[4] Altun, Y. (2020). Improved results on the stability analysis of linear neutral systems with delay decay

approach. Math Meth Appl Sci., 43, 1467–1483.
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Abstract. In this paper, we introduce Sheffer stroke very true operator on MTL-algebras.
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1. Introduction

When a structure is established as a mathematical model, we must firstly throw off re-

dundant statements. For this aim, we venture to give equivalent statements as possible as

with the least number of axioms or the least number of operations and so on. For instance,

Tarski achieved to explain Abelian groups with the least number of axioms from the point

of divisor operator. [19]

The concept of monoidal t-norm-based logic (shortly, MTL) is given by Godo and Esteva

[8]. Montogna and Jenei show that MTL corresponds to the logic of all left continuous t-

norms and their residua [11]. In accordance wtih these studies, MTL-algebras are defined

as a counterpart of this logical system [8]. In recent times, the structure of MTL-algebras

Received:2021.01.20 Revised:2021.03.09 Accepted:2021.03.19

∗ Corresponding author

Tahsin Oner; tahsin.oner@ege.edu.tr; https://orcid.org/0000-0002-6514-4027

Ibrahim Senturk; ibrahim.senturk@ege.edu.tr; https://orcid.org/0000-0001-8296-2796

.

93

HTTPS://ORCID.ORG/0000-0001-8296-2796
HTTPS://ORCID.ORG/0000-0002-6514-4027


94 I. SENTURK AND T. ONER

has been supported with important structural works [13, 20]. These works get a constructive

effect on its algebraic structure. For instance, Vetterlein demonstrate that MTL-algebras

correspond to the positive cone of a partially ordered group [20]. Moreover, he confirm that

this algebra is a commutative, bounded, integral and pre-linear residuated lattice [13]. And,

MTL-algebras are the basis residuated structures having all algebras induced by their residua

and continuous t-norms. So, MTL-algebras have an important position in different structures

which are related with fuzzy logic [21].

Oner and Senturk introduced Sheffer stroke basic algebras [14]. Sheffer stroke basic al-

gebras play an important role in great numbers of logics as many-valued  Lukasiewicz logics,

non-classical logics, fuzzy logics and etc. This reduction topic is studied in recent times such

as [15]. In harmony with these logical roles, Senturk gives a reduction of MTL-algebras by

means of only Sheffer stroke operation which is called Sheffer stroke MTL-algebras [18].

The notion of ”very true” was firstly established by Hájek giving an answer to the question

”whether any natural axiomatization is possible and how far can even this sort of fuzzy logic

be captured by standard methods of mathematical logic?” [10]. To put in a different way, very

true operator is used to reduce the number of possible logical values in many-valued logic.

After this operator was effectively used in particular tasks in various fields of mathematics

[9, 5, 1, 23], this operator has been implemented to other logical algebras such as effect

algebras [6], commutative basic algebras [3], equality algebras [22], Rℓ-monoids [16], MV-

algebras [12] and so on.

In this paper, we give some fundamental concepts which are needed for our construction

in Section 2. In Section 3, we introduce Sheffer stroke very true operator on Sheffer stroke

MTL-algebras. We handle some fundamental properties of this operator. We obtain some

equalities and inequalities. We give some relations among very true operator, supremum

and infimum. Then, we engaging links among Sheffer stroke MTL-algebras, BL-algebras,

MV-algebras and Gödel algebras by using them. In Section 4, we briefly mention what we

do during this work.

2. Preliminaries

The basic definitions, lemmas, theorems and etc. which are used throughout the paper

are given in this section.

The fundamental concepts in this chapter are taken from [17] and [2].
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Definition 2.1. If the binary operations ∨ and ∧ satisfy the following conditions on the

non-empty set L:

(L1) k ∧ l = l ∧ k and k ∨ l = l ∨ k,

(L2) k ∧ (l ∧m) = (k ∧ l) ∧m and k ∨ (l ∨m) = (k ∨ l) ∨m,

(L3) k ∧ k = k and k ∨ k = k,

(L4) k ∧ (k ∨ l) = k and k ∨ (k ∧ l) = k

then L = (L;∧,∨) is called a lattice.

Definition 2.2. An algebraic structure L = (L;∨,∧, 0, 1) is called bounded lattice if it sat-

isfies the following properties:

(i) for each k ∈ L, k ∧ 1 = k and k ∨ 1 = 1,

(ii) for each k ∈ L, k ∧ 0 = 0 and k ∨ 0 = k.

The elements 1 is called the greatest element and 0 is called called the least element of the

lattice.

Definition 2.3. Let the structure L = (L;∨,∧) be a lattice. A mapping k 7→ k⊥ is said to

be an antitone involution if it verifies the following conditions:

(i) k⊥⊥ = k (involution),

(ii) k ≤ l implies l⊥ ≤ k⊥ (antitone).

Definition 2.4. Let L be a bounded lattice with an antitone involution. If the below condi-

tions

k ∨ k⊥ = 1 and k ∧ k⊥ = 0,

are satisfied then k⊥ is called the complement of k and the lattice L = (L;∨,∧,⊥ , 0, 1) is also

an ortholattice.

Lemma 2.1. Let L = (L;∨,∧,⊥ ) be a lattice which verifies the antitone involution condition.

Then the De Morgan laws

k⊥ ∧ l⊥ = (k ∨ l)⊥ and k⊥ ∨ l⊥ = (k ∧ l)⊥

are satisfied.

Definition 2.5. [4] Let G = (G, |) be a groupoid. If the following conditions are satisfied,

then the operation | : G×G → G is called a Sheffer stroke operation.

(S1) g1|g2 = g2|g1,

(S2) (g1|g1)|(g1|g2) = g1,
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(S3) g1|((g2|g3)|(g2|g3)) = ((g1|g2)|(g1|g2))|g3,

(S4) (g1|((g1|g1)|(g1|g1)))|(g1|((g1|g1)|(g2|g2))) = g1.

If also the following identity

(S5) g2|(g1|(g1|g1)) = g2|g2,

is satisfied, then it is said to be an ortho-Sheffer stroke operation.

Lemma 2.2. [4] Let G = (G, |) be a groupoid with Sheffer stroke operation. Then the

following equalities are verified for each g1, g2, g3 ∈ G:

(i) (g1|g2)|(g1|(g2|g3)) = g1,

(ii) (g1|g1)|g2 = g2|(g1|g2),

(iii) g1|((g2|g2)|g1) = g1|g2.

Lemma 2.3. [4] Let G = (G, |) be a groupoid. The binary relation ≤ defined on G as below

g1 ≤ g2 if and only if g1|g2 = g1|g1

is a partial order on G.

Lemma 2.4. [4] Let | be a Sheffer stroke operation on G and ≤ order relation of G. Then,

the following equalities:

(i) g1 ≤ g2 if and only if g2|g2 ≤ g1|g1,

(ii) g1|(g2|(g1|g1)) = g1|g1 is the identity of G,

(iii) g1 ≤ g2 implies g2|g3 ≤ g1|g3, for all g3 ∈ G,

(iv) g3 ≤ g1 and g3 ≤ g2 imply g1|g2 ≤ g3|g3

are verified.

Lemma 2.5. [14] Let G = (G; |) be a Sheffer stroke basic algebra with the constant element

1. Then, the following identities:

(i) g1|(g1|g1) = 1,

(ii) g1|(1|1) = 1,

(iii) 1|(g1|g1) = g1,

(iv) ((g1|(g2|g2))|(g2|g2))|(g2|g2) = g1|(g2|g2),

(v) (g2|(g1|(g2|g2)))|(g1|(g2|g2)) = 1

are verified.

Definition 2.6. [21] Let X be a non-empty set, the operations ∨, ∧, → and ⊛ be binary

operations on X and the elements 0 and 1 be algebraic constant of X. If the following
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conditions:

(MTL1) (X;∧,∨, 0, 1) is a bounded lattice,

(MTL2) (X;⊛, 0, 1) is a commutative monoid,

(MTL3) x ≤ y → z if and only if x⊛ y ≤ z,

(MTL4) (x → y) ∨ (y → x) = 1

are satisfied for each x, y, z ∈ X, then the algebraic structure X = (X;∨,∧,→,⊛, 0, 1) is

called an MTL-algebra.

Definition 2.7. [21] Let X = (X;∨,∧,→,⊛, 0, 1) be an MTL-algebra. Then X is called

(i) a BL-algebra if x ∧ y = x⊛ (x → y) for each x, y ∈ X,

(ii) an MV-algebra if (x → y) → y = (y → x) → x for each x, y ∈ X,

(iii) a Gödel algebra if x⊛ x = x for each x ∈ X.

Theorem 2.1. [18] Let X = (X;∨,∧,→,⊛, 0, 1) an MTL-algebra. If the operations are

defined as:

x1 ∧ x2 := (((x2|x2)|x1)|x1)|(((x2|x2)|x1)|x1)

x1 ∨ x2 := (x1|(x2|x2))|(x2|x2)

x1 ⊛ x2 := (x1|x2)|(x1|x2)

x1 → x2 := x1|(x2|x2)

for each x1, x2 ∈ X, then X = (X; |) is a Sheffer stroke reduction of MTL-algebra.

Corollary 2.1. [18] Let X = (X; |) is a Sheffer stroke reduction of MTL-algebra. Then, it

is also a Sheffer stroke basic algebra.

During this paper, Sheffer stroke reduction of MTL-algebras are shortly called Sheffer

stroke MTL-algebras.

3. A Construction of Very True Operator On Sheffer Stroke MTL-Algebras

In this part of the paper, we construct Sheffer stroke very true operator on Sheffer stroke

MTL-algebras. We examine some fundamental properties of this operator. We attain some

equalities and inequalities. Moreover, we give some relations among very true operator,

supremum and infimum. On the other hand, we build links among Sheffer stroke MTL-

algebras, BL-algebras, MV-algebras and Gödel algebras by using them.

Definition 3.1. Let M = (M ; |) be a Sheffer stroke MTL-algebra. If the following condi-

tions:
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(SVSM1) ϑ(1) = 1

(SVSM2) ϑ(m) ≤ m

(SVSM3) ϑ(m|(n|n)) ≤ ϑ(m)|(ϑ(n)|ϑ(n))

(SVSM4) ϑ(m) ≤ ϑ(ϑ(m))

(SVSM5) (ϑ(m|(n|n))|(ϑ(n|(m|m))|ϑ(n|(m|m))))|(ϑ(n|(m|m))|ϑ(n|(m|m))) = 1

are satisfied for each m,n ∈ M ,then the mapping ϑ : M → M is called a Sheffer stroke very

true operator.

Example 3.1. Let M = {0, k, l,m, n, 1}. The relations of elements in M are given as Figure

1 and the operation | on this structure is defined as the Table 1.

1

m

l

n

k

0

Figure 1. Hasse Diagram of M

| 0 l k m n 1

0 1 1 1 1 1 1

l 1 m 1 1 m m

k 1 1 n n 1 n

m 1 1 n l 1 l

n 1 m 1 1 k k

1 1 m n l k 0

Table 1. |−operation on M

If the binary operations ∧,∨,⊛ and → are defined as Theorem 2.1, then we have the

following Cayley tables for these operations.

∧ 0 l k m n 1

0 0 0 0 0 0 0

l 0 l 0 0 l l

k 0 0 k k 0 k

m 0 0 k m 0 m

n 0 l 0 0 n n

1 0 l k m n 1

Table 2. ∧−operation on M

and

∨ 0 l k m n 1

0 0 l k m n 1

l l l 1 1 n 1

k k 1 k m 1 1

m m 1 m m 1 1

n n n 1 1 n 1

1 1 1 1 1 1 1

Table 3. ∨−operation on M
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⊛ 0 l k m n 1

0 0 0 0 0 0 0

l 0 l 0 0 l l

k 0 0 k k 0 k

m 0 0 n m 0 m

n 0 l 0 m n n

1 0 l k m n 1

Table 4. ⊛−operation on M

and

→ 0 l k m n 1

0 1 1 1 1 1 1

l m 1 m m 1 1

k n m 1 1 n 1

m l l 1 1 n 1

n k 1 k m 1 1

1 0 l k m n 1

Table 5. → −operation on M

So, the algebraic structure M = (M ; |) is a Sheffer stroke MTL-algebra. If the operation

ϑ : M → M is defined by

ϑ(u) :=



0, u = 0,

1, u = 1,

n, u ∈ {l, n},

m, x ∈ {k,m}

then, this mapping is a Sheffer stroke very true operator on M .

Proposition 3.1. Assume that the mapping ϑ : M → M be a Sheffer stroke very true

operator. Then, the following statements

(i) ϑ(0) = 0,

(ii) m = 1 if and only if ϑ(m) = 1,

(iii) ϑ is increasing,

(iv) ϑ(m|m) ≤ ϑ(m)|ϑ(m)

hold for each m,n, k ∈ L.

Proof. (i) By (SVSM2), we get ϑ(0) ≤ 0. Moreover, we have m ≤ ϑ(m) for each

m ∈ M . So, we obtain ϑ(0) = 0.

(ii) (⇒:) It is clear from (SVSM1).

(⇐:) Assume that ϑ(m) = 1. Since ϑ(m) = 1 ≤ m ≤ 1, we get m = 1.

(iii) Assume that m ≤ n. Then, we have m|(n|n) = 1. By the help of (SVSM1) and (SVSM3),

we get ϑ(m|(n|n)) = ϑ(1) = 1 ≤ ϑ(m)|(ϑ(n)|ϑ(n)) ≤ 1. We obtain ϑ(m)|(ϑ(n)|ϑ(n)) = 1.

So, we conclude that ϑ(m) ≤ ϑ(n), i.e., the mapping ϑ is increasing.
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(iv) Let m be any element of M . Then, we have

ϑ(m|m) = ϑ(m|1)

= ϑ(m|(0|0))

≤ ϑ(m)|(ϑ(0)|ϑ(0))

= ϑ(m)|(0|0)

= ϑ(m)|1

= ϑ(m)|ϑ(m).

So, the inequality ϑ(m|m) ≤ ϑ(m)|ϑ(m) is verified for each m ∈ M .

Lemma 3.1. Let ϑ : M → M be a Sheffer stroke very true operator. Then, the equality

ϑ(m) = ϑ2(m) is verified for each m ∈ M .

Proof. Let m be any element of M . By using Proposition 3.1 (iii) and (SVSM1),

we obtain ϑ(ϑ(m)) ≤ ϑ(m). From (SVSM4), we have ϑ(m) ≤ ϑ(ϑ(m)). Hence, we obtain

ϑ(m) = ϑ(ϑ(m)) for each m ∈ M .

Lemma 3.2. The following inequalities

(ϑ(m)|ϑ(n))|(ϑ(m)|ϑ(n)) ≤ (m|n)|(m|n) ≤ ϑ(m|n)|ϑ(m|n)

hold for each m,n ∈ L.

Proof. Let m and n be any elements of M . By using (SVSM2), we get ϑ(m) ≤ m

and ϑ(n) ≤ n. From Lemma 2.4 (i), we have m|n ≤ ϑ(m)|ϑ(n). If we use again the same

step for the last equation, we get the following inequality:

(ϑ(m)|ϑ(n))|(ϑ(m)|ϑ(n)) ≤ (m|n)|(m|n). (3.1)

By (SVSM2), we have ϑ(m|n) ≤ m|n. Similarly, we obtain

(m|n)|(m|n) ≤ ϑ(m|n)|ϑ(m|n). (3.2)

From Inequalities (3.1) and (3.2), we attain our assumption.

Lemma 3.3. The following inequalities

(i) ϑ(m|m) ≤ ϑ(m|n),

(ii) ϑ(m|n)|ϑ(m|n) ≤ ϑ(m),
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(iii) ϑ(m) ≤ ϑ((m|n)|n)

hold for each m,n ∈ L.

Proof. (i) Let m and n be any two elements of M . We have m ≤ 1 and n ≤ 1. Then,

n ≤ 1 ⇒ 1|m ≤ n|m, (By Lemma 2.4 (iii))

⇒ m|m ≤ n|m, (By Lemma 2.5 and Corollary 2.1)

⇒ ϑ(m|m) ≤ ϑ(m|n). (By Proposition 3.1 (iii))

(ii) We have the inequality m|m ≤ n|m from Lemma 3.3 (i). By the help of Lemma 2.4 (i)

and Definition 2.5 (S2), we get (n|m)|(n|m) ≤ m. By increasing property of ϑ mapping, we

conclude that ϑ((n|m)|(n|m)) ≤ ϑ(m) for each m,n ∈ M .

(iii) We have n ≤ 1 for each n ∈ M . We obtain m ≤ (m|n)|n by using Lemma 2.4 (iii),

Lemma 2.5 (iii) and Lemma 2.2, respectively. Since ϑ is an increasing mapping, we obtain

ϑ(m) ≤ ϑ((m|n)|n) for each m,n ∈ M .

Theorem 3.1. Let ϑ : M → M be a Sheffer stroke very true operator. Let sup and inf be

the least upper bound and greatest lower bound functions, respectively. Then the following

equalities

sup{ϑ(m), ϑ(n)} = ϑ(sup{m,n}) and inf{ϑ(m), ϑ(n)} = ϑ(inf{m,n})

are satisfied for each m,n ∈ M .

Proof. Let m,n ∈ M and the mapping ϑ : M → M be a Sheffer stroke very true

operator. We have m ≤ sup{m,n} and n ≤ sup{m,n}. Since ϑ is an increasing mapping, we

get ϑ(n) ≤ ϑ(sup{m,n}) and ϑ(m) ≤ ϑ(sup{m,n}). Then, we obtain the following inequality

sup{ϑ(m), ϑ(n)} ≤ ϑ(sup{m,n}) (3.3)

for each m,n ∈ M .

Let sup{ϑ(m), ϑ(n)} = k for k ∈ M . So, we have ϑ(m) ≤ k and ϑ(n) ≤ k. By the help of

Lemma 3.1 and Proposition 3.1 (iii), we get ϑ(m) ≤ ϑ(k) and ϑ(n) ≤ ϑ(k). Using again

Proposition 3.1 (iii), we get m ≤ k and n ≤ k. Then, we attain sup{m,n} ≤ k. From

Definition 3.1 (SVSM2) and Proposition 3.1 (iii), we obtain following the inequalities

ϑ(sup{m,n}) ≤ ϑ(k) ≤ k = sup{ϑ(m), ϑ(n)}. (3.4)
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From Inequalities (3.3) and (3.4), we prove that sup{ϑ(m), ϑ(n)} = ϑ(sup{m,n}) for each

m,n ∈ M .

For the infimum part of the proof, we have inf{m,n} ≤ m and inf{m,n} ≤ n for each

m,n ∈ M . Since ϑ is an increasing mapping, we get ϑ(inf{m,n}) ≤ ϑ(m) and ϑ(inf{m,n}) ≤

ϑ(n). So, we obtain the following inequality

ϑ(inf{m,n}) ≤ inf{ϑ(m), ϑ(n)}. (3.5)

By Definition 3.1 (SVSM2), we have ϑ(m) ≤ m and ϑ(n) ≤ n. Then, we get inf{ϑ(m), ϑ(n)} ≤

inf{m,n}. From Proposition 3.1 (iii) and Lemma 3.1, we handle ϑ(inf{ϑ(m), ϑ(n)}) ≤

ϑ(ϑ(inf{m,n})), i.e.,

inf{ϑ(m), ϑ(n)} ≤ ϑ(inf{m,n}). (3.6)

From Inequalities (3.5) and (3.6), we show that inf{ϑ(m), ϑ(n)} = ϑ(inf{m,n}) for each

m,n ∈ M .

Example 3.2. Let M = {0, k, l,m, n, 1} and ϑ : M → M be defined as Example 3.1. Then

we show that Theorem 3.1 is satisfied for each a, b ∈ M . If one of {a, b} equals 0 or 1,

the equalities sup{ϑ(a), ϑ(b)} = ϑ(sup{a, b}) and inf{ϑ(a), ϑ(b)} = ϑ(inf{a, b}) are obtained

clearly. We examine a ∈ {k, l,m, n} and b ∈ {k, l,m, n}. So, we need to examine the sets

such as {k, l}, {k,m}, {k, n}, {l,m}, {l, n} and {m,n}.

• We analyze for {k, l}:

sup{ϑ(k), ϑ(l)} = sup{m,n} = 1 = ϑ(1) = ϑ(sup{k, l}).

inf{ϑ(k), ϑ(l)} = inf{m,n} = 0 = ϑ(0) = ϑ(inf{k, l}).

• We analyze for {k,m}:

sup{ϑ(k), ϑ(m)} = sup{m,m} = m = ϑ(m) = ϑ(sup{k,m}).

inf{ϑ(k), ϑ(m)} = inf{m,m} = m = ϑ(k) = ϑ(inf{k,m}).

• We analyze for {k, n}:

sup{ϑ(k), ϑ(n)} = sup{m,n} = 1 = ϑ(1) = ϑ(sup{k, n}).

inf{ϑ(k), ϑ(n)} = inf{m,n} = 0 = ϑ(0) = ϑ(inf{k, n}).

• We analyze for {l,m}:

sup{ϑ(l), ϑ(m)} = sup{n,m} = 1 = ϑ(1) = ϑ(sup{l,m}).
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inf{ϑ(l), ϑ(m)} = inf{n,m} = 0 = ϑ(0) = ϑ(inf{l,m}).

• We analyze for {l, n}:

sup{ϑ(l), ϑ(n)} = sup{n, n} = n = ϑ(n) = ϑ(sup{l, n}).

inf{ϑ(l), ϑ(n)} = inf{n, n} = n = ϑ(l) = ϑ(inf{l, n}).

• We analyze for {m,n}:

sup{ϑ(m), ϑ(n)} = sup{m,n} = 1 = ϑ(1) = ϑ(sup{m,n}).

inf{ϑ(m), ϑ(n)} = inf{m,n} = 0 = ϑ(o) = ϑ(inf{m,n}).

Corollary 3.1. Let m,n ∈ M and the mapping ϑ : M → M be a Sheffer stroke very true

operator. Then the following equalities

sup{ϑ(m), ϑ(n)} = ϑ(sup{ϑ(m), ϑ(n)}) and inf{ϑ(m), ϑ(n)} = ϑ(inf{ϑ(m), ϑ(n)})

are verified for each m,n ∈ M .

Proof. It is straightforward from Theorem 3.1 and Proposition 3.1 (iii).

Theorem 3.2. Let Fixϑ(M) be the set of the points of M such that ϑ(m) = m. Then, the

equality Fixϑ(M) = ϑ(M) is satisfied.

Proof. Assume that n ∈ ϑ(M). Then, we have any element m of M such that

ϑ(m) = n. Using Lemma 3.1, we obtain ϑ(n) = ϑ(ϑ(m)) = ϑ(m) = n. So, we get n ∈

Fixϑ(M). Hence, we handle the following relation

ϑ(M) ⊆ Fixϑ(M). (3.7)

Let n ∈ Fixϑ(M). This means that ϑ(n) = n. Since n ∈ M , n = ϑ(n) ∈ ϑ(M). Therefore,

we get the following relation

Fixϑ(M) ⊆ ϑ(M). (3.8)

From the relations (3.7) and (3.8), we prove that Fixϑ(M) = ϑ(M).

Example 3.3. Let M = {0, k, l,m, n, 1} and ϑ : M → M be defined as Example 3.1. Then,

we have Fixϑ(M) = {0, n,m, 1} and also ϑ(M) = {0, n,m, 1}. So, we verify Fixϑ(M) =

ϑ(M) for Example 3.1.



104 I. SENTURK AND T. ONER

Now, when we consider on Theorem 3.1 and Theorem 3.2, we can reach the following

corollary.

Corollary 3.2. Let the mapping ϑ : M → M be a Sheffer stroke very true operator. Then

the following equalities

sup{Fixϑ(M)} = ϑ(sup(M)) and inf{Fixϑ(M)} = ϑ(inf(M))

are verified.

Lemma 3.4. Let id : M → M be defined as Id(m) = m for each m ∈ M . Then, the mapping

Id is a Sheffer stroke very true operator on M .

Proof. It is clear from Definition 3.1, Definition 2.6 and Theorem 2.1.

Theorem 3.3. Let M = (M ; |) be a Sheffer stroke MTL-algebra and the mapping ϑ : M →

M be a Sheffer stroke very true operator. Then,

(i) M = (M ;∨,∧,→,⊛, 0, 1) is a BL-algebra if and only if ϑ(inf{m,n}) = ϑ((((m|m)|n)|n)

|(((m|m)|n)|n)) for each very true operator ϑ on M and for each m,n ∈ M ,

(ii) M = (M ;∨,∧,→,⊛, 0, 1) is a MV -algebra if and only if ϑ(sup{m,n}) = ϑ((m|(n|n)|(n|n)))

for each very true operator ϑ on M and for each m,n ∈ M ,

(iii) M = (M ;∨,∧,→,⊛, 0, 1) is a Gödel algebra if and only if ϑ(inf{m,n}) = (ϑ(m)|ϑ(n))|

(ϑ(m)|ϑ(n)) for each very true operator ϑ on M and for each m,n ∈ M ,

Proof. The proof is clear from Lemma 3.4 and Theorem (3.7) in [18].

4. Conclusion

In this paper, we define Sheffer stroke very true operator on MTL-algebras. We get some

fundamental properties of this operator. We give some equalities and inequalities which

are used in our construction. Then, we attain some relations among very true operator,

supremum and infimum relations. Finally, we construct paths among Sheffer stroke MTL-

algebras, BL-algebras, MV-algebras and Gödel algebras by using them. After this work, we

will use this operator other algebraic structures. By this means, we want to obtain new paths

among new algebraic structures.
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Abstract. The object of the present paper is to characterize trans-Sasakian 3-manifolds

with respect to the Schouten-van Kampen connection. Also, we consider Ricci solitons,

η-Ricci solitons and Yamabe solitons of a trans-Sasakian 3-manifold with respect to the

Schouten-van Kampen connection. Then we give an example of a trans-Sasakian 3-manifold

with respect to the Schouten-van Kampen connection.
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1. Introduction

In [19], Oubina defined a new class of almost contact metric structure, which is said

to be trans-Sasakian structure of type (α, β). In [7], Chinea and Gonzales introduced two

subclasses of trans-Sasakian structures which contain the Kenmotsu and Sasakian structures.

Trans-Sasakian structures of type (α, 0), (0, β) and (0, 0) are α-Sasakian, β-Kenmotsu and

cosymplectic, respectively [3, 14].

The Schouten-van Kampen connection defined as adapted to a linear connection for study-

ing non holonomic manifolds and it is one of the most natural connections on a differentiable

manifold [2, 13, 23]. Solov’ev studied hyperdistributions in Riemannian manifolds using the

Schouten-van Kampen connection [24, 25, 26, 27]. Then Olszak studied the Schouten-van
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Kampen connection to almost (para) contact metric structures [18]. In recent times, Perktaş

and Yildiz studied some symmetry conditions and some soliton types of quasi-Sasakian

manifolds and f -Kenmotsu manifolds with respect to the Schouten-van Kampen connection

[21, 22].

Let (M, g) be a Riemannian manifold. Then the metric g is called a Ricci soliton if [12]

LXg + 2Ric+ 2δg = 0, (1.1)

where L is the Lie derivative, Ric is the Ricci tensor, X is a complete vector field and δ is a

constant on M . In [8], Cho and Kimura given the notion of η-Ricci solitons. The manifold

(M, g) is called an η-Ricci soliton if there exist a smooth vector field X such that the Ricci

tensor satisfies

LXg + 2Ric+ 2δg + 2µη ⊗ η = 0, (1.2)

where and µ is also constant on M . Note that Ricci solitons and η-Ricci solitons are said to

be shrinking, steady and expanding according as δ is negative, zero and positive, respectively.

In [12], Hamilton defined Yamabe flow to solve the Yamabe problem. The Yamabe soliton

comes from the blow-up procedure along the Yamabe flow, so such solitons have been studied

intensively [1, 5, 6, 10, 17].

A Yamabe soliton on a Riemannian manifold (M, g) satisfying [1]

1

2
(LXg) = (τ − δ)g, (1.3)

where τ is the scalar curvature of M . Moreover, if (M, g) is of constant scalar curvature

τ , then the Riemannian metric g is called a Yamabe metric.Yamabe solitons are said to be

shrinking, steady and expanding according as δ is positive, zero and negative, respectively.

This paper is organized as follows: After preliminaries, we give some basic information

about the Schouten-van Kampen connection and trans-Sasakian manifolds. Then we adapte

the Schouten-van Kampen connection on trans-Sasakian 3-manifolds. In section 4, we con-

sider Ricci semisymmetric trans-Sasakian 3-manifolds with respect to the Schouten-van Kam-

pen connection. In the last section, firstly we study Ricci solitons, η-Ricci solitons and

Yamabe solitons of a trans-Sasakian 3-manifold with respect to the Schouten-van Kampen

connection. Then we give an example of a trans-Sasakian 3-manifold with respect to the

Schouten-van Kampen connection.
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2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric

structure (ϕ, ξ, η, g), that is, ϕ is (1, 1)-tensor field, ξ is a vector field, η is a 1-form and g is

the compatible Riemannian metric such that

ϕ2(U) = −U + η(U)ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0, (2.4)

g(ϕU, ϕV ) = g(U, V )− η(U)η(V ), (2.5)

g(U, ϕV ) = −g(ϕU, V ), g(U, ξ) = η(U), (2.6)

for all U, V ∈ TM [3]. The fundamental 2-form Φ of the manifold is defined by

Φ(U, V ) = g(U, ϕV ). (2.7)

This may be expressed by the condition [4]

(∇Uϕ)V = α(g(U, V )ξ − η(V )U) + β(g(ϕU, V )ξ − η(V )ϕU), (2.8)

for smooth functions α and β on M . Here we say that the trans-Sasakian structure is of type

(α, β). From the formula (2.8) it follows that

∇Uξ = −αϕU + β(U − η(U)ξ), (2.9)

(∇Uη)V = −αg(ϕU, V ) + βg(ϕU, ϕV ). (2.10)

An explicit example of trans-Sasakian 3-manifolds was constructed in [15]. In [9], the Ricci

tensor and curvature tensor for trans-Sasakian 3-manifolds were studied and their explicit

formulae were given.

From [9] we know that for a trans-Sasakian 3-manifold

2αβ + ξα = 0, (2.11)

Ric(U, ξ) = (2(α2 − β2)− ξβ)η(U)− Uβ − (ϕU)α, (2.12)

Ric(U, V ) = (
τ

2
+ ξβ − (α2 − β2))g(U, V )− (

τ

2
+ ξβ − 3(α2 − β2))η(U)η(V )

−(V β + (ϕV )α)η(U)− (Uβ + (ϕU)α)η(V ), (2.13)
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and

R(U, V )W = (
τ

2
+ 2ξβ − 2(α2 − β2))(g(V,W )U − g(U,W )V )

−g(V,W )[(
τ

2
+ ξβ − 3(α2 − β2))η(U)ξ

−η(U)(ϕgradα− gradβ) + (Uβ + (ϕU)α)ξ]

+g(U,W )[(
τ

2
+ ξβ − 3(α2 − β2))η(V )ξ

−η(V )(ϕgradα− gradβ) + (V β + (ϕV )α)ξ] (2.14)

−[(Wβ + (ϕW )α)η(V ) + (V β + (ϕV )α)η(W )

+(
τ

2
+ ξβ − 3(α2 − β2))η(V )η(W )]U

+[(Wβ + (ϕW )α)η(U) + (Uβ + (ϕU)α)η(W )

+(
τ

2
+ ξβ − 3(α2 − β2))η(U)η(W )]V,

where Ric is the Ricci tensor, R is the curvature tensor and τ is the scalar curvature of the

manifold M , respectively.

If α and β are constants, then equations (2.11)-(2.14) become

R(U, V )W = (
τ

2
− 2(α2 − β2))(g(V,W )U − g(U,W )V )

−(
τ

2
− 3(α2 − β2))(g(V,W )η(U)ξ − g(U,W )η(V )ξ (2.15)

+ η(V )η(W )U − η(U)η(W )V ),

Ric(U, V ) = (
τ

2
− (α2 − β2))g(U, V ) (2.16)

−(
τ

2
− 3(α2 − β2))η(U)η(V ),

Ric(U, ξ) = 2(α2 − β2)η(U), (2.17)

R(U, V )ξ = (α2 − β2)(η(V )U − η(U)V ), (2.18)

R(ξ, U)V = (α2 − β2)(g(U, V )ξ − η(V )U), (2.19)

QU = (
τ

2
− (α2 − β2))U (2.20)

−(
τ

2
− 3(α2 − β2))η(U)ξ.

From (2.11) it follows that if α and β are constants, then the manifold is either α-Sasakian

or β-Kenmotsu or cosymplectic, respectively.
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On the other hand we have two naturally defined distributions in the tangent bundle TM

of M as follows:

H = ker η, V = span{ξ}. (2.21)

Then we have TM = H ⊕ V , H ∩ V = {0} and H ⊥ V . This decomposition allows one

to define the Schouten-van Kampen connection ∇̃ over an almost contact metric structure.

The Schouten-van Kampen connection ∇̃ on an almost contact metric manifold with respect

to Levi-Civita connection ∇ is defined by [24]

∇̃UV = ∇UV − η(V )∇Uξ + (∇Uη)(V )ξ. (2.22)

Thus with the help of the Schouten-van Kampen connection given by (2.22), many properties

of some geometric objects connected with the distributionsH, V can be characterized [24, 25,

26]. For example g, ξ and η are parallel with respect to ∇̃, that is, ∇̃ξ = 0, ∇̃g = 0,∇̃η = 0.

Also the torsion T̃ of ∇̃ is defined by

T̃ (U, V ) = η(U)∇V ξ − η(V )∇Uξ + 2dη(U, V )ξ.

3. Trans-Sasakian 3-manifolds with respect to the Schouten-van Kampen

connection

Let M be a trans-Sasakian 3-manifold with α and β are constants with respect to the

Schouten-van Kampen connection. Then using (2.9) and (2.10) in (2.22), we get

∇̃UV = ∇UV + α{η(V )ϕU − g(ϕU, V )ξ}+ β{g(U, V )ξ − η(V )U}. (3.23)

Let R and R̃ be the curvature tensors of the Levi-Civita connection ∇ and the Schouten-van

Kampen connection ∇̃ are given by

R(U, V ) = [∇U ,∇V ]−∇[U,V ], R̃(U, V ) = [∇̃U , ∇̃V ]− ∇̃[U,V ].

Using (3.23), by direct calculations, we obtain the following formula connecting R and R̃ on

a trans-Sasakian 3-manifold

R̃(U, V )W = R(U, V )W

+α2{g(ϕV,W )ϕU − g(ϕU,W )ϕV + η(U)η(W )V (3.24)

−η(V )η(W )U − g(V,W )η(U)ξ + g(U,W )η(V )ξ}

+β2{g(V,W )U − g(U,W )V }.
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We will also consider the Riemann curvature (0, 4)-tensors R̃, R, the Ricci tensors R̃ic, Ric,

the Ricci operators Q̃,Q and the scalar curvatures τ̃ , τ of the connections ∇̃ and ∇ are given

by

R̃(U, V,W,Z) = R(U, V,W,Z)

+α2{g(ϕV,W )g(ϕU,Z)− g(ϕU,W )g(ϕV,Z)

+g(V,Z)η(U)η(W )− g(U,Z)η(V )η(W ) (3.25)

−g(V,W )η(U)η(Z) + g(U,W )η(V )η(Z)}

+β2{g(V,W )g(U,Z)− g(U,W )g(V,Z)},

R̃ic(V,W ) = Ric(V,W )

+2β2g(V,W )− 2α2η(V )η(W ), (3.26)

Q̃U = QU + 2β2U − 2α2η(U)ξ, (3.27)

τ̃ = τ − 2α2 + 6β2, (3.28)

respectively, where R̃(U, V,W,Z) = g(R̃(U, V )W,Z) and R(U, V,W,Z) = g(R(U, V )W,Z).

4. Ricci semisymetric trans-Sasakian 3-manifolds with respect to the

Schouten-van Kampen connection

In this section, we study Ricci semisymetric trans-Sasakian 3-manifolds with α and β are

constants with respect to the Schouten-van Kampen connection.

If a trans-Sasakian 3-manifold with respect to the Schouten-van Kampen connection is

Ricci semisymmetric then we can write

(R̃(U, V ) · R̃ic)(W,Y ) = 0, (4.29)

which turns to

R̃ic(R̃(U, V )W,Y ) + R̃ic(W, R̃(U, V )Y ) = 0. (4.30)

Using (3.26) in (4.30), we obtain

Ric(R̃(U, V )W,Y )− 2α2η(R̃(U, V )W )η(Y ) + 2β2g(R̃(U, V )W,Y )

+Ric(W, R̃(U, V )Y )− 2α2η(R̃(U, V )Y )η(W ) + 2β2g(W, R̃(U, V )Y ) (4.31)

= Ric(R̃(U, V )W,Y ) +Ric(W, R̃(U, V )Y ) = 0.
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Now using (3.24) in (4.31), we get

Ric(R(U, V )W,Y ) +Ric(W,R(U, V )Y ) + α2{g(ϕV,W )Ric(ϕU, Y )

−g(ϕU,W )Ric(ϕV, Y ) +Ric(V, Y )η(U)η(W )−Ric(U, Y )η(V )η(W )

+g(U,W )η(V )Ric(Y, ξ)− g(V,W )η(U)Ric(Y, ξ) + g(ϕV, Y )Ric(ϕU,W )

−g(ϕU, Y )Ric(ϕV,W ) +Ric(V,W )η(U)η(Y )−Ric(U,W )η(V )η(Y ) (4.32)

+g(U, Y )η(V )Ric(W, ξ)− g(V, Y )η(U)Ric(W, ξ)}

+β2{g(V,W )Ric(Y,U)− g(U,W )Ric(Y, V )

+g(V, Y )Ric(W,U)− g(U, Y )Ric(W,V )} = 0.

Let {ei}, (1 ≤ i ≤ 3), be an orthonormal basis of the tangent space at any point of M . Then

the sum for 1 ≤ i ≤ 3 of the relation (4.32) for U = Y = ei gives

Ric(R(ei, V )W, ei) +Ric(W,R(ei, V )ei)

+α2 {Ric(V,W )− τη(V )η(W )}

+2α2
(
α2 − β2

)
{3η(V )η(W )− g (V,W )} (4.33)

+β2{τg(V,W )− 3Ric(V,W )} = 0,

which is equal to

λ {τg(V,W )− 3Ric (V,W )}+ 2µ(α2 − β2)η(V )η(W )

+µRic(V,W )− 2µ(α2 − β2)g(V,W ) + 4µ(α2 − β2)η(V )η(W )

−µτη(V )η(W ) (4.34)

+α2 {Ric(V,W )− τη(V )η(W )}

+2α2(α2 − β2) {3η(V )η(W )− g(V,W )}

+β2{τg(V,W )− 3Ric(V,W )} = 0,

where λ = τ
2 − 2(α2 − β2) and µ = τ

2 − 3(α2 − β2). After some calculations we have

[−3
(
λ+ β2

)
+
(
µ+ α2

)
]Ric(V,W )

+[(λ+ β2)τ − 2
(
µ+ α2

)
(α2 − β2)]g(V,W )

+[6(µ+ α2)(α2 − β2)−
(
λ+ β2

)
τ ]η(V )η(W ) = 0,
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i.e.,

Ric(V,W ) = [
τ

2
−
(
α2 − β2

)
]g (V,W ) + [3

(
α2 − β2

)
− τ

2
]η(V )η(W ). (4.35)

Hence M is an η-Einstein manifold with respect to the Levi-Civita connection. Now using

(4.35) in (3.26), we have

R̃ic(V,W ) = [
τ

2
− α2 + 3β2]g(V,W )− [

τ

2
− α2 + 3β2]η(V )η(W ).

Thus M is also an η-Einstein manifold with respect to the Schouten-van Kampen connection.

Therefore we have the following:

Theorem 4.1. Let M be a trans-Sasakian 3-manifold with respect to the Schouten-van Kam-

pen connection. If M is Ricci semisymmetric with respect to the Schouten-van Kampen

connection then M is an η-Einstein manifold with respect to the Schouten-van Kampen con-

nection and Levi-Civita connection.

5. Soliton types on trans-Sasakian 3-manifolds with respect to the

Schouten-van Kampen connection

In this section we study Ricci solitons, η-Ricci solitons and Yamabe solitons on a trans-

Sasakian 3-manifold with α and β are constants with respect to the Schouten-van Kampen

connection.

In a trans-Sasakian 3-manifold M endowed with respect to the Schouten-van Kampen

connection bearing an Ricci soliton, we can write

(L̃Xg + 2R̃ic+ 2δg)(U, V ) = 0. (5.36)

Using (3.23) in (5.36), since ∇̃g = 0 and T̃ ̸= 0, we have

(L̃Xg)(U, V ) = g(∇UX,V ) + g(U,∇V X) = (LXg)(U, V ),

that is,

g(∇UX,V ) + g(U,∇V X) + 2R̃ic(U, V ) + 2δg(U, V ) = 0. (5.37)

Putting X = ξ in (5.37), we obtain

g(∇Uξ, V ) + g(U,∇V ξ) + 2R̃ic(U, V ) + 2δg(U, V ) = 0. (5.38)

Now using (2.9) in (5.38), we get

g(−αϕU + β(U − η(U)ξ), V ) + g(U,−αϕV + β(V − η(V )ξ) + 2R̃ic(U, V ) + 2δg(U, V ) = 0,
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i.e.,

R̃ic(U, V ) = −(β + δ)g(U, V ) + βη(U)η(V ). (5.39)

Thus M is an η-Einstein manifold with respect to the Schouten-van Kampen connection.

Also using (3.26) in (5.39), we get

Ric(U, V ) = −(2β2 + β + δ)g(U, V ) + (β + 2α2)η(U)η(V ).

Hence M is an η-Einstein manifold with respect to the Levi-Civita connection. Thus we have

the following:

Theorem 5.1. Let M be a trans-Sasakian 3-manifold bearing a Ricci soliton (ξ, δ, g) with

respect to the Schouten-van Kampen connection. Then M is an η-Einstein manifold both

with respect to the Schouten-van Kampen connection and Levi-Civita connection.

Putting V = ξ and using (3.26) in (5.39), we give the following:

Corollary 5.1. A Ricci soliton (ξ, δ, g) on a trans-Sasakian 3-manifold M with respect to

the Schouten-van Kampen connection is always steady.

On the other hand, from (2.16) and (3.26), it is easy to see that a trans-Sasakian 3-

manifold M is always η-Einstein with respect to the Schouten-van Kampen connection of

the form R̃ic = γg + ση ⊗ η, where γ = −σ = τ
2 − α2 + 3β2. Then, we write

(L̃ξg + 2R̃ic+ 2δg)(U, V ) = ((2γ + 2δ)g − 2ση ⊗ η)(U, V ), (5.40)

for all U, V ∈ χ(M), which implies that the manifold M admits a Ricci soliton (ξ, δ, g) if

γ + δ = 0 and σ = 0.

Using (5.39), we can also state the following:

Corollary 5.2. The scalar curvature of a trans-Sasakian 3-manifold M bearing a Ricci

soliton (ξ, δ, g) with respect to the Schouten-van Kampen connection is τ̃ = −3δ − 2β.

Now we consider an η-Ricci soliton on a trans-Sasakian 3-manifold M with respect to the

Schouten-van Kampen connection. Then

(L̃Xg + 2R̃ic+ 2δg + 2µη ⊗ η)(U, V ) = 0, (5.41)

that is,

g(∇UX,V ) + g(U,∇V X) + 2R̃ic(U, V ) + 2δg(U, V ) + 2µη(U)η(V ) = 0. (5.42)
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Putting X = ξ in (5.42), we obtain

R̃ic(U, V ) = −δg(U, V )− µη(U)η(V ). (5.43)

Hence M is an η-Einstein manifold with respect to the Schouten-van Kampen connection.

Taking V = ξ in (5.43), we get δ + µ = 0. Using (3.26) in (5.43), we have

Ric(U, V ) = [−2β2 − δ]g(U, V ) + [2α2 − µ]η(U)η(V ).

Thus M is an η-Einstein manifold with respect to the Levi-Civita connection. Now we have

the following:

Theorem 5.2. Let M be a trans-Sasakian 3-manifold bearing an η-Ricci soliton (ξ, δ, µ, g)

with respect to the Schouten-van Kampen connection. Then M is an η-Einstein manifold

with respect to the Schouten-van Kampen connection and the Levi-Civita connection.

Again let us consider equations (5.36) and (5.37). Using (3.26), we obtain

g(∇UX,V ) + g(U,∇V X) + 2Ric(U, V ) + 2(2β2 + δ)g(U, V )− 2α2η(U)η(V ) = 0.

Thus we write

(LXg)(U, V ) + 2Ric(U, V ) + 2(2β2 + δ)g(U, V )− 2α2η(U)η(V ) = 0.

This last equation shows that if (X, δ, g) is a Ricci soliton on a trans-Sasakian 3-manifold M

with respect to the Schouten-van Kampen connection, then the manifold admits an η-Ricci

soliton (X, 2β2 + δ, α2, g) with respect to the Levi-Civita connection. If α = 0, then

(LXg)(U, V ) + 2Ric(U, V ) + 2(2β 2 + δ)g(U, V ) = 0.

So we have the following:

Corollary 5.3. Let M be a trans-Sasakian 3-manifold bearing a Ricci soliton (X, δ, g) with

respect to the Schouten-van Kampen connection. Then we have: (i) If α = 0, then M admits

a Ricci soliton (X, 2β 2 + δ, g) with respect to the Levi-Civita connection. (ii) If α ̸= 0, then

M admits an η-Ricci soliton (X, 2β2 + δ, α2, g) with respect to the Levi-Civita connection.

Example 5.1. We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3, y ̸= 0}, where

(x, y, z) are the standard coordinates in R3. The vector fields

e1 = ey
∂

∂x
, e2 =

∂

∂y
, e3 = ey

∂

∂z
,
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are linearly independent at each point of M . Let g be the Riemannian metric defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e2) for any Z ∈ χ(M). Let ϕ be the (1, 1)-tensor

field defined by ϕ(e1) = e3, ϕ(e2) = 0, ϕ(e3) = −e1. Then using linearity of ϕ and g we have

η(e2) = 1, ϕ2W = −W + η(W )e3,

g(ϕW,ϕZ) = g(W,Z)− η(W )η(Z),

for any W,Z ∈ χ(M). Thus for e2 = ξ, (ϕ, ξ, η, g) defines an almost contact metric structure

on M. Now, by direct computations we obtain

[e1, e2] = −e1, [e2, e3] = e3, [e1, e3] = 0.

The Riemannian connection ∇ of the metric tensor g is given by the Koszul’s formula which

is

2g(∇UV,W ) = Ug(V,W ) + V g(W,U)−Wg(U, V ) (5.44)

−g(U, [V,W ])− g(V, [U,W ]) + g(W, [U, V ]).

Using (5.44), we obtain

∇e1e1 = e2, ∇e1e2 = −e1, ∇e1e3 = 0,

∇e2e1 = 0, ∇e2e2 = 0, ∇e2e3 = 0, (5.45)

∇e3e1 = 0, ∇e3e2 = −e3, ∇e3e3 = e2.

By (5.45), we see that the manifold satisfies (2.8) for U = e1, α = 0, β = −1, and e2 = ξ.

Similarly, it can be shown that for U = e2 and U = e3 the manifold also satisfies (2.8) for

α = 0, β = −1, and e2 = ξ. Hence the manifold is a trans-Sasakian manifold of type (0,−1)

[20]. Now we consider the Schouten-van Kampen connection to this example. From (5.45),

we have

R(e1, e2)e1 = e2, R(e1, e2)e2 = −e1, R(e1, e2)e3 = 0,

R(e1, e3)e1 = e3, R(e1, e3)e2 = 0, R(e1, e3)e3 = −e1, (5.46)

R(e2, e3)e1 = 0, R(e2, e3)e2 = e3, R(e2, e3)e3 = −e2.
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Again using (3.23) and (5.45), we obtain

∇̃e1e1 = (β + 1)e2, ∇̃e1e2 = −(β + 1)e1 + αe3,

∇̃e1e3 = −αe2, ∇̃e2e1 = 0, ∇̃e2e2 = 0,

∇̃e2e3 = 0, ∇̃e3e1 = αe2, (5.47)

∇̃e3e2 = −(β + 1)e3 − αe1, ∇̃e3e3 = (β + 1)e2.

Considering (5.47), we can see that ∇̃eiξ = 0, (1 ≤ i ≤ 3), for ξ = e2 and α = 0, β = −1.

Hence M is a trans-Sasakian 3-manifold of type (0,−1) with respect to the Schouten-van

Kampen connection. Thus from (5.47), we get

R̃(e1, e2)e1 = (1 + α2 − β2)e2, R̃(e1, e2)e2 = −(1 + α2 − β2)e1,

R̃(e1, e2)e3 = 0, R̃(e1, e3)e1 = (1− α2 − β2)e3,

R̃(e1, e3)e2 = 0, R̃(e1, e3)e3 = (−1− α2 + β2)e1, (5.48)

R̃(e2, e3)e1 = 0, R̃(e2, e3)e2 = (1 + α2 − β2)e3,

R̃(e2, e3)e3 = (−1 + α2 + β2)e2.

Now using (5.48), we see that the non-zero components of the Ricci tensor R̃ic with respect

to the Schouten-van Kampen connection as follows:

R̃ic(e1, e1) = −2 + 2β2, R̃ic(e2, e2) = −2− 2α2 + 2β2, R̃ic(e3, e3) = −2 + 2β2.

For any U, V ∈ χ(M), we write

U = a1e1 + a2e2 + a3e3,

V = b1e1 + b2e2 + b3e3.

Thus we have

(L̃ξg)(X,Y ) + 2S̃(X,Y ) + 2δg(X,Y ) + 2µη(X)η(Y ) = (−2 + 2β2 + δ)a1b1

+(−2− 2α2 + 2β2 + δ + µ)a2b2

+(−2 + 2β2 + δ)a3b3.

If δ = 2− 2β2 and µ = 2α2, then M admits an η-Ricci soliton (ξ, δ, µ, g) with respect to the

Schouten-van Kampen connection.
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Finally we study Yamabe solitons on a trans-Sasakian 3-manifold with respect to the

Schouten-van Kampen connection. Assume that (M,X, δ, g) is a Yamabe soliton on a trans-

Sasakian 3-manifold with respect to the Schouten-van Kampen connection. From (1.3), we

can write

1

2
(L̃Xg)(U, V ) = (τ̃ − δ)g(U, V ), (5.49)

that is,

1

2
{g(∇̃UX,V ) + g(U, ∇̃V X)} = (τ̃ − δ)g(U, V ). (5.50)

Putting X = ξ in (5.50), we obtain τ̃ = δ, which implies that the following:

Theorem 5.3. The scalar curvature τ̃ of a trans-Sasakian 3-manifold bearing a Yamabe

soliton (M, ξ, δ, g) with respect to the Schouten-van Kampen connection is equal to δ.

So we give the followings:

Corollary 5.4. A trans-Sasakian 3-manifold bearing a Yamabe soliton (M, ξ, δ, g) with re-

spect to the Schouten-van Kampen connection is of constant scalar curvature with respect to

the Schouten-van Kampen connection.

Corollary 5.5. If a trans-Sasakian 3-manifold bearing a Yamabe soliton (M, ξ, δ, g) with

respect to the Schouten-van Kampen connection, then the Riemannian metric g is a Yamabe

metric.

References

[1] Barbosa E., Riberio E. (2013). On conformal solutions of the Yamabe flow, Arch. Math., 101, 79-89.

[2] Bejancu A., Faran H. (2006). Foliations and geometric structures, Math. and its Appl. 580. Springer,

Dordrecht.

[3] Blair D. E. (1976). Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics Vol 509.

Springer-Verlag, Berlin-New York.

[4] Blair D. E., Oubina J. A. (1990). Conformal and related changes of metric on the product of two almost

contact metric manifolds, Publications Matematiques, 34, 199-207.

[5] Cao H. D., Sun X., Zhang Y. (2012). On the structure of gradient Yamabe solitons, Mathematical Research

Letters, 19, 767-774.

[6] Chen B. Y., Deshmukh S. (2018). Yamabe and quasi Yamabe solitons on Euclidean submanifolds, Mediterr.

J. Math., 15(5), 194, 1-9.

[7] Chinea D., Gonzales J. C. (1990). A classification of almost contact metric manifolds, Ann. Mat. Pura

Appl., 156(4), 15-30.



120 S. ZEREN AND A. YILDIZ

[8] Cho J. C., Kimura M. (2009). Ricci solitons and real hypersurfaces in a complex space form, Tohoku

Math. J., 61(2), 205-212.

[9] De U.C., Tripathi M. M. (2003). Ricci Tensor in 3-dimensional Trans-Sasakian Manifolds. Kyungpook

Math. J., 43, 247-255.

[10] Deshmukh S., Chen B. Y. (2018). A note on Yamabe solitons, Balkan J. Geom. Appl., 23(1), 37-43.

[11] Gray A., Hervella L. M. (1980). The sixteen classes of almost Hermitian manifolds and their linear

invariants, Ann. Mat. Pura Appl., 123(4), 35-58.

[12] Hamilton R. S. (1988). The Ricci flow on surfaces, Mathematics and general relativity. Contemp. Math.,

71, 237-262.
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1. Introduction

In this field, the notion of almost para-complex structure on a smooth manifold has been

studied, in the first papers by Libermann, P. [9], Patterson, E. M.[12] until now, from several

different points of view. Moreover, the papers related to it have appeared many times in

a rather disperse way, and a survey of further results on para-complex geometry (including

para-Kähler geometry) can be found for instance in [2, 3, 5]. Also, other further signifiant

developments are due in some recent surveys [1, 8, 13], where some aspects concerning the

geometry of para-complex manifolds are presented on the tangent and cotangent bundles.

See also [7, 6, 11, 15, 16].

The main idea in this note consists in the modification of the Sasaki metric. First we

introduce a new metric called φ-Sasaki metric on the tangent bundle TM over a para-Kahler-

Norden manifold (M2m, φ, g). This new metric will lead us to interesting results. Afterward

we construct almost para-complex Norden structures on tangent bundle equipped with the
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φ-Sasaki metric and investigate necessary and sufficient conditions for these structures to

become para-Kähler-Norden, quasi-para-Kähler-Norden. Finally we characterize some prop-

erties of almost para-complex Norden structures in context of almost product Riemannian

manifolds.

2. Preliminaries

Let TM be the tangent bundle over an m-dimensional Riemannian manifold (Mm, g) and

the natural projection π : TM → M . A local chart (U, xi)i=1,m on M induces a local chart

(π−1(U), xi, yi)i=1,m on TM . Let C∞(M) (resp. C∞(TM)) be the ring of real-valued C∞

functions on M (resp. TM) and ℑr
s(M) (resp. ℑr

s(TM)) be the module over C∞(M) (resp.

C∞(TM)) of C∞ tensor fields of type (r, s).

We have two complementary distributions on TM , the vertical distribution V and the

horizontal distribution H, defined by :

V(x,u) = Ker(dπ(x,u)) = {ai ∂

∂yi
|(x,u), ai ∈ R},

H(x,u) = {ai ∂

∂xi
|(x,u) − aiujΓk

ij

∂

∂yk
|(x,u), ai ∈ R},

where (x, u) ∈ TM , such that T(x,u)TM = H(x,u) ⊕ V(x,u).

Let X = Xi ∂
∂xi be a local vector field on M . The vertical and the horizontal lifts of X

are defined by

XV = Xi ∂

∂yi
, (2.1)

XH = Xi δ

δxi
= Xi{ ∂

∂xi
− yjΓk

ij

∂

∂yk
}. (2.2)

For consequences, we have ( ∂
∂xi )

H = δ
δxi and ( ∂

∂xi )
V = ∂

∂yi
, then ( δ

δxi ,
∂
∂yi

)i=1,m is a local

adapted frame on TTM .

Lemma 2.1. [18] Let (M, g) be a Riemannian manifold and R its tensor curvature, then for

all vector fields X,Y ∈ ℑ1
0(M) we have:

(1) [XH , Y H ]p = [X,Y ]Hp − (Rx(X,Y )u)V ,

(2) [XH , Y V ]p = (∇XY )Vp ,

(3) [XV , Y V ]p = 0,

where p = (x, u) ∈ TM .

An almost product structure φ on a manifold M is a (1, 1) tensor field on M such that

φ2 = idM , φ ̸= ±idM (idM is the identity tensor field of type (1, 1) on M). The pair (M,φ)
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is called an almost product manifold.

A linear connection ∇ on (M,φ) such that ∇φ = 0 is said to be an almost product connec-

tion. There exists an almost product connection on every almost product manifold[4].

An almost para-complex manifold is an almost product manifold (M,φ), such that the two

eigenbundles TM+ and TM− associated to the two eigenvalues +1 and −1 of φ, respectively,

have the same rank. Note that the dimension of an almost paracomplex manifold is neces-

sarily even [3].

An almost para-complex Norden manifold (M2m, φ, g) is a real 2m-dimensional differentiable

manifold M2m with an almost para-complex structure φ and a Riemannian metric g such

that

g(φX, Y ) = g(X,φY ), (2.3)

for all X,Y ∈ ℑ1
0(M), in this case g is called a pure metric with respect to φ or para-Norden

metric (B-metric)[13].

A para-Kähler-Norden manifold is an almost para-complex Norden manifold (M2m, φ, g) such

that φ is integrable i.e ∇φ = 0 (B-manifold), where ∇ is the Levi-Civita connection of g

[13, 16].

A Tachibana operator ϕφ : ℑ2
0(M) → ℑ3

0(M) applied to the pure metric g is given by

(ϕφg)(X,Y, Z) = (φX)(g(Y, Z)) +X(g(φY,Z)) + g((LY φ)X,Z)

+g((LZφ)X,Y ), (2.4)

for all X,Y, Z ∈ ℑ1
0(M) [17], where LY denotes the Lie differentiation with respect to Y .

In an almost para-complex Norden manifold, a para-Norden metric g is called para-holomorphic

if

(ϕφg)(X,Y, Z) = 0, (2.5)

for all X,Y, Z ∈ ℑ1
0(M)[13].

A para-holomorphic Norden manifold is an almost para-complex Norden manifold (M2m, φ, g)

such that g is a para-holomorphic i.e ϕφg = 0.

In [13], Salimov and his collaborators showed that for an almost para-complex Norden man-

ifold, the condition ϕφg = 0 is equivalent to ∇φ = 0. By virtue of this point of view,

para-holomorphic Norden manifolds are similar to para-Kähler-Norden manifolds (For com-

plex version see [8]).
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The purity conditions for a tensor field ω ∈ ℑq
0(M) with respect to the para-complex structure

φ given by

ω(φX1, X2, · · · , Xq) = ω(X1, φX2, · · · , Xq) = · · · = ω(X1, X2, · · · , φXq),

for all X1, X2, · · · , Xq ∈ ℑ1
0(M) [13].

In [17], an operator ϕφ : ℑq
0(M) → ℑq+1

0 (M) joined with φ and applied to the pure tensor

field ω, given by

(ϕφω)(Y,X1, · · · , Xq) = (φY )(ω(X1, · · · , Xq)) + Y (ω(φX1, · · · , Xq))

+ω((LX1φ)Y,X2, · · · , Xq) + · · ·+ ω((X1, · · · , (LXqφ)Y ),

for all Y,X1, X2, · · · , Xq ∈ ℑ1
0(M). If ϕφω vanishes, then ω is said to be almost para-

holomorphic.

It is well known that if (M2m, φ, g) is a para-Kähler-Norden manifold, the Riemannian cur-

vature tensor is pure [13], and
∇Y (φZ) = φ∇Y Z,

R(φY,Z) = R(Y, φZ) = R(Y, Z)φ = φR(Y,Z),

R(φY, φZ) = R(Y, Z),

(2.6)

for all Y,Z ∈ ℑ1
0(M).

Let (M2m, φ, g) be a non-integrable almost para-complex Norden manifold, if

σ
X,Y,Z

g((∇Xφ)Y, Z) = 0.

for all X,Y, Z ∈ ℑ1
0(M), where σ is the cyclic sum by three arguments, then the triple

(M2m, φ, g) is a quasi-para-Kähler-Norden manifold [5, 10]. It is well known that

σ
X,Y,Z

g((∇Xφ)Y, Z) = 0 ⇔ σ
X,Y,Z

(ϕφg)(X,Y, Z) = 0, (2.7)

which was proven in [14].

3. φ-Sasaki metric

Definition 3.1. Let (M2m, φ, g) be a para-Kähler-Norden manifold. On the tangent bundle

TM , we define a φ-Sasaki metric noted gφ by

(1) gφ(X
H , Y H)(x,u) = gx(X,Y ),

(2) gφ(X
H , Y V )(x,u) = 0,

(3) gφ(X
V , Y V )(x,u) = gx(X,φY ),
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where X,Y ∈ ℑ1
0(M) and (x, u) ∈ TM .

Lemma 3.1. Let (M2m, φ, g) be a para-Kähler-Norden manifold, we have the following

(1) XHgφ(Y
H , ZH) = Xg(Y,Z),

(2) XV gφ(Y
H , ZH) = 0,

(3) XHgφ(Y
V , ZV ) = gφ((∇XY )V , ZV ) + gφ(Y

V , (∇XZ)V ),

(4) XV gφ(Y
H , ZH) = 0,

for any X,Y, Z ∈ ℑ1
0(M), where ∇ denote the Levi-Civita connection of (M2m, φ, g).

Theorem 3.1. Let (M2m, φ, g) be a para-Kähler-Norden manifold and (TM, gφ) its tangent

bundle equipped with the φ-Sasaki metric. If ∇ (resp ∇̃) denote the Levi-Civita connection

of (M, g) (resp (TM, gφ) ), then we have:

(1) (∇̃XHY H)(x,u) = (∇XY )H(x,u) −
1

2
(Rx(X,Y )u)V ,

(2) (∇̃XHY V )(x,u) = (∇XY )V(x,u) +
1

2
(Rx(φu, Y )X)H ,

(3) (∇̃XV Y H)(x,u) =
1

2
(Rx(φu,X)Y )H ,

(4) (∇̃XV Y V )(x,u) = 0,

for all vector fields X,Y ∈ ℑ1
0(M) and (x, u) ∈ TM , where R denote the curvature tensor of

(M2m, φ, g).

The proof of Theorem 3.1 follows directly from Kozul formula, Lemma 2.1 and Lemma

3.1.

4. Some almost Para-complex Structures

4.1. We Consider the tensor field Jφ ∈ ℑ1
1(TM) by JφX

H = (φX)H

JφX
V = (φX)V

(4.8)

for all X ∈ ℑ1
0(M).

Lemma 4.1. Let (M2m, φ, g) be a para-Kähler-Norden manifold and (TM, gφ) its tangent

bundle equipped with the φ-Sasaki metric. The couple (TM, Jφ) is an almost para-complex

manifold .
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Proof. By virtue of (4.8), we have J2
φX

H = Jφ(JφX
H) = Jφ((φX)H) = (φ(φX))H = (φ2X)H = XH ,

J2
φX

V = Jφ(JφX
V ) = Jφ((φX)V ) = (φ(φX))V = (φ2X)V = XV ,

for any X ∈ ℑ1
0(M), then J2

φ = idTM .

Let {E1, · · · , Em, Em+1, · · · , E2m} be local frame of eigenvectors on M such that

φEi = Ei , φEm+i = −Em+i, for all i = 1,m.

If Z = Zi
1E

H
i + Zi

2E
V
i , then

JφZ = Zi
1(φEi)

H + Zi
2(φEi)

V = Zi
1E

H
i + Zi

2E
V
i = Z,

i.e. TTM+ = Span(EH
1 , · · · , EH

m , EV
1 , · · · , EV

m),

If Z = Zm+i
1 EH

m+i + Zm+i
2 EV

m+i, then

JφZ = Zm+i
1 (φEm+i)

H + Zm+i
2 (φEm+i)

V = −Zi
m+1E

H
m+i − Zm+i

2 EV
m+i = −Z,

i.e. TTM− = Span(EH
m+1, · · · , EH

2m, EV
m+1, · · · , EV

2m).

Theorem 4.1. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) its tangent

bundle equipped with the φ-Sasaki metric and the almost para-complex structure Jφ defined

by (4.8). The triple (TM, Jφ, gφ) is an almost para-complex Norden manifold.

Proof. For all X,Y ∈ ℑ1
0(M), from (4.8) we have

(i) gφ(JφX
H , Y H) = gφ((φX)H , Y H) = g(φX, Y ) = g(X,φY )

= gφ(X
H , (φY )H) = gφ(X

H , JφY
H),

(ii) gφ(JφX
H , Y V ) = gφ((φX)H , Y V ) = 0 = gφ(X

H , Y V ) = gφ(X
H , JφY

V ),

(iii) gφ(JφX
V , Y V ) = gφ((φX)V , Y V ) = g(φX,φY ) = g(X,Y )

= g(X,φ2Y ) = gφ(X
V , (φY )V ) = gφ(X

V , JφY
V ).

Since g is pure with respect to φ, then gφ is pure with respect to Jφ.

Proposition 4.1. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) its tangent

bundle equipped with the φ-Sasaki metric and the almost para-complex structure Jφ defined

by (4.8), then we get

1. (ϕJφgφ)(X
H , Y H , ZH) = 0,

2. (ϕJφgφ)(X
V , Y H , ZH) = 0,

3. (ϕJφgφ)(X
H , Y V , ZH) = 0,

4. (ϕJφgφ)(X
H , Y H , ZV ) = 0,
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5. (ϕJφgφ)(X
V , Y V , ZH) = 0,

6. (ϕJφgφ)(X
V , Y H , ZV ) = 0,

7. (ϕJφgφ)(X
H , Y V , ZV ) = 0,

8. (ϕJφgφ)(X
V , Y V , ZV ) = 0,

for all X,Y, Z ∈ ℑ1
0(M).

Proof. We calculate Tachibana operator ϕJφ applied to the pure metric gφ. This

operator is characterized by (2.4), from Lemma 3.1 we have

1. (ϕJφgφ)(X
H , Y H , ZH) = (JφX

H)gφ(Y
H , ZH)−XHgφ(JφY

H , ZH)

+gφ
(
(LY HJφ)X

H , ZH
)
+ gφ

(
Y H , (LZHJφ)X

H
)

= (φX)Hgφ(Y
H , ZH)−XHgφ((φY )H , ZH)

+gφ
(
LY HJφX

H − Jφ(LY HXH), ZH
)

+gφ
(
Y H , LZHJφX

H − Jφ(LZHXH)
)

= (φX)g(Y,Z)−Xg(φY,Z)

+gφ
(
[Y H , (φX)H ]− Jφ[Y

H , XH ], ZH
)

+gφ
(
Y H , [ZH , (φX)H ]− Jφ[Z

H , XH ]
)

= (φX)g(Y,Z)−Xg(φY,Z) + g
(
[Y, φX]− φ[Y,X], Z

)
+g

(
Y, [Z,φX]− φ[Z,X]

)
= (φX)g(Y,Z)−Xg(φY,Z) + g

(
(LY φ)X,Z

)
+g

(
Y, (LZφ)X

)
= (ϕφg)(X,Y, Z).

Since (M2m, φ, g) is a para-Kähler-Norden manifold, then (ϕφg)(X,Y, Z) = 0.

2. (ϕJφgφ)(X
V , Y H , ZH) = (JφX

V )gφ(Y
H , ZH)−XV gφ(JφY

H , ZH)
)

+gφ
(
(LY HJφ)X

V , ZH
)
+ gφ

(
Y H , (LZHJφ)X

V
)

= (φX)V gφ(Y
H , ZH)−XV gφ((φY )H , ZH)

+gφ
(
[Y H , (φX)V ]− Jφ[Y

H , XV ], ZH
)

+gφ
(
Y H , [ZH , (φX)V ]− Jφ[Z

H , XV ]
)

= 0.
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3. (ϕJφgφ)(X
H , Y V , ZH) = (JφX

H)gφ(Y
V , ZH)−XHgφ(JφY

V , ZH)

+gφ
(
(LY V Jφ)X

H , ZH
)
+ gφ

(
Y V , (LZHJφ)X

H
)

= gφ
(
[Y V , (φX)H ]− Jφ[Y

V , XH ], ZH
)

+gφ
(
Y V , [ZH , (φX)H ]− Jφ[Z

H , XH ]
)

= gφ
(
Y V , (−R(Z,φX)u)V + (φR(Z,X)u)V

)
= −g

(
R(Z,φX)u, φY ) + g

(
φR(Z,X)u, φY

)
.

Since the Riemann curvature R of a para-Kähler-Norden manifold is pure, then

(ϕJφgφ)(X
H , Y V , ZH) = −g

(
R(Z,X)u, Y ) + g

(
R(Z,X)u, Y )

= 0.

4. (ϕJφgφ)(X
H , Y H , ZV ) = (JφX

H)gφ(Y
H , ZV )−XHgφ(JφY

H , ZV )

+gφ
(
(LY HJφ)X

H , ZV
)
+ gφ

(
Y H , (LZV Jφ)X

H
)

= gφ
(
[Y H , (φX)H ]− Jφ[Y

H , XH ], ZV
)

+gφ
(
Y H , [ZV , (φX)H ]− Jφ[Z

V , XH ]
)

= gφ
(
(−R(Y, φX)u)V + (φR(Y,X)u)V , ZV

)
= −g(R(Y, φX)u, φZ) + g(φR(Y,X)u, φZ)

= −g(R(Y,X)u, Z) + g(R(Y,X)u, Z)

= 0.

The other formulas are obtained by a similar calculation.

Therefore, we have the following result.

Theorem 4.2. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) be its tangent

bundle equipped with the φ-Sasaki metric and the almost para-complex structure Jφ defined

by (4.8),then the triple (TM, Jφ, gφ) is a para-Kähler-Norden manifold.

Corollary 4.1. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) be its tangent

bundle equipped with the φ-Sasaki metric and the almost para-complex structure Jφ defined

by (4.8), then the triple (TM, Jφ, gφ) is a quasi-para-Kähler-Norden manifold.
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4.2. We Consider the tensor field Pφ ∈ ℑ1
1(TM) defined by: PφX

H = −(φX)H

PφX
V = −(φX)V

(4.9)

for all X ∈ ℑ1
0(M), satisfies the following:

1. Pφ = −Jφ.

2. gφ is pure with respect to Pφ.

3. ϕPφ
gφ = ϕJφgφ.

Therefore we have the following results.

Theorem 4.3. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) be its tangent

bundle equipped with the φ-Sasaki metric and the almost para-complex structure Pφ defined

by (4.9), then the triple (TM,Pφ, gφ) is a para-Kähler-Norden manifold.

4.3. We Consider the tensor field Qφ ∈ ℑ1
1(TM) defined by: QφX

H = (φX)V

QφX
V = (φX)H

(4.10)

for all X ∈ ℑ1
0(M).

Lemma 4.2. Let (M2m, φ, g) be a para-Kähler-Norden manifold and (TM, gφ) its tangent

bundle equipped with the φ-Sasaki metric. The couple (TM,Qφ) is an almost para-complex

manifold .

Proof. By virtue of (4.10), we have Q2
φX

H = Qφ(QφX
H) = Qφ((φX)V ) = (φ(φX))H = (φ2X)H = XH ,

Q2
φX

V = Qφ(QφX
V ) = Qφ((φX)H) = (φ(φX))V = (φ2X)V = XV ,

for any X ∈ ℑ1
0(M), then Q2

φ = idTM .

Let {E1, · · · , Em, Em+1, · · · , E2m} be local frame of eigenvectors on M such that

φEi = Ei , φEm+i = −Em+i, for all i = 1,m, then

TTM+ = Span(EH
1 + EV

1 , · · · , EH
m + EV

m, EH
m+1 − EV

m+1, · · · , EH
2m − EV

2m),

TTM− = Span(EH
1 − EV

1 , · · · , EH
m − EV

m, EH
m+1 + EV

m+1, · · · , EH
2m + EV

2m).
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Theorem 4.4. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) its tangent

bundle equipped with the φ-Sasaki metric and the almost para-complex structure Qφ defined

by (4.10). The φ-Sasaki metric is never pure with respect to Qφ i.e The triple (TM,Qφ, gφ)

is never an almost para-complex Norden manifold.

4.4. We Consider the tensor field Fφ ∈ ℑ1
1(TM) by FφX

H = −(φX)H

FφX
V = (φX)V

(4.11)

for all X ∈ ℑ1
0(M).

Lemma 4.3. Let (M2m, φ, g) be a para-Kähler-Norden manifold and (TM, gφ) its tangent

bundle equipped with the φ-Sasaki metric. The couple (TM,Fφ) is an almost para-complex

manifold .

Theorem 4.5. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) its tangent

bundle equipped with the φ-Sasaki metric and the almost para-complex structure Fφ defined

by (4.11). The triple (TM,Fφ, gφ) is an almost para-complex Norden manifold.

Proof. With the same steps in the proof of Theorem 4.1, we get the results.

Proposition 4.2. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) its tangent

bundle equipped with the φ-Sasaki metric and the almost para-complex structure Fφ defined

by (4.11), then we get

1. (ϕFφ
gφ)(X

H , Y H , ZH) = 0,

2. (ϕFφ
gφ)(X

V , Y H , ZH) = 0,

3. (ϕFφ
gφ)(X

H , Y V , ZH) = 2g
(
R(X,Z)Y, u),

4. (ϕFφ
gφ)(X

H , Y H , ZV ) = 2g
(
R(X,Y )Z, u),

5. (ϕFφ
gφ)(X

V , Y V , ZH) = 0,

6. (ϕFφ
gφ)(X

V , Y H , ZV ) = 0,

7. (ϕFφ
gφ)(X

H , Y V , ZV ) = 0,

8. (ϕFφ
gφ)(X

V , Y V , ZV ) = 0,

for all X,Y, Z ∈ ℑ1
0(M), where R denote the curvature tensor of (M, g).

Proof. We calculate Tachibana operator ϕFφ applied to the pure metric gφ. With

the same steps in the proof of Proposition 4.1, we get the results.
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Theorem 4.6. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) be its tangent

bundle equipped with the φ-Sasaki metric and the almost para-complex structure Fφ defined

by (4.11). The triple (TM,Fφ, gφ) is a para-Kähler-Norden manifold if and only if M is flat.

Proof. For all X,Y, Z ∈ ℑ1
0(M) and h, k, l ∈ {H,V }

(ϕFφ
gφ))(X

h, Y k, Z l) = 0 ⇔

 g(R(X,Z)Y, u) = 0

g(R(X,Y )Z, u) = 0

⇔ R = 0.

Theorem 4.7. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) be its tangent

bundle equipped with the φ-Sasaki metric and the almost para-complex structure Fφ defined

by (4.11). The triple (TM,Fφ, gφ) is a quasi-para-Kähler-Norden manifold.

Proof. For all X̃, Ỹ , Z̃ ∈ ℑ1
0(TM),

σ
X̃,Ỹ ,Z̃

(ϕJφgφ)(X̃, Ỹ , Z̃) = (ϕJφgφ)(X̃, Ỹ , Z̃) + (ϕJφgφ)(Ỹ , Z̃, X̃) + (ϕJφgφ)(Z̃, X̃, Ỹ )

By virtue of Proposition 4.1 we have

1. σ
XH ,Y H ,ZH

(ϕJφgφ)(X
H , Y H , ZH) = 0,

2. σ
XV ,Y H ,ZH

(ϕJφgφ)(X
V , Y H , ZH) = 2g(R(Y, Z)X,u) + 2g(R(Z, Y )X,u) = 0,

3. σ
XV ,Y V ,ZH

(ϕJφgφ)(X
V , Y V , ZH) = 0,

4. σ
XV ,Y V ,ZV

(ϕJφgφ)(X
V , Y V , ZV ) = 0,

then, (TM, Jφ, gφ) is a quasi-para-Kähler-Norden manifold.

4.5. We Consider the tensor field Kφ ∈ ℑ1
1(TM) defined by: KφX

H = (φX)H

KφX
V = −(φX)V

(4.12)

for all X ∈ ℑ1
0(M), satisfies the following:

1. Kφ = −Fφ.

2. gφ is pure with respect to Kφ.

3. ϕKφ
gφ = −ϕFφ

gφ.

Therefore we have the following results.
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Theorem 4.8. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) be its tangent

bundle equipped with the φ-Sasaki metric and the almost para-complex structure Kφ defined

by (4.12), then we have

1. The triple (TM,Kφ, gφ) is is a quasi-para-Kähler-Norden manifold.

2. The triple (TM,Kφ, gφ) is a para-Kähler-Norden manifold if and only if M is flat.

4.6. Now consider the almost product structure Fφ defined by (4.11). We define a tensor

field S of type (1, 2) and linear connection ∇̂ on TM by,

S(X̃, Ỹ ) =
1

2

[
(∇̃

FφỸ
Fφ)X̃ + Fφ

(
(∇̃

Ỹ
Fφ)X̃

)
− Fφ

(
(∇̃

X̃
Fφ)Ỹ

)]
. (4.13)

∇̂
X̃
Ỹ = ∇̃

X̃
Ỹ − S(X̃, Ỹ ). (4.14)

for all X̃, Ỹ ∈ ℑ1
0(TM), where ∇̃ is the Levi-Civita connection of (TM, gφ) given by Theorem

3.1. ∇̂ is an almost product connection on TM (see [4, p.151] for more details).

Lemma 4.4. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) be its tangent

bundle equipped with the φ-Sasaki metric and the almost product structure Fφ defined by

(4.11). Then tensor field S is as follows,

(1) S(XH , Y H) = −1

2
(R(X,Y )u)V ,

(2) S(XH , Y V ) =
1

2
(R(φu, Y )X)H ,

(3) S(XV , Y H) = −(R(φu,X)Y )H ,

(4) S(XV , Y V ) = 0,

for all X,Y ∈ ℑ1
0(M).

Proof. (1) Using (4.11) and (4.13), we have

S(XH , Y H) =
1

2

[
(∇̃FφY HFφ)X

H + Fφ

(
(∇̃Y HFφ)X

H
)
− Fφ

(
(∇̃XHFφ)Y

H
)]

=
1

2

[
∇̃(φY )H (φX)H + Fφ(∇̃(φY )HX

H)− Fφ

(
∇̃Y H (φX)H

)
−∇̃Y HXH + Fφ

(
∇̃XH (φY )H

)
+ ∇̃XHY H

]
=

1

2

[
(∇φY φX)H − 1

2
(R(φY, φX)u)V − (φ∇φY X)H

−1

2
(φR(φY,X)u)V + (φ∇Y φX)H +

1

2
(φR(Y, φX)u)V

−(∇Y X)H +
1

2
(R(Y,X)u)V − (φ∇XφY )H

−1

2
(φR(X,φY )u)V + (∇XY )H − 1

2
(R(X,Y )u)V

]
.
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Using (2.6) we have

S(XH , Y H) = −1

2
(R(X,Y )u)V .

(2) By a similar calculation to (1), we have

S(XH , Y V ) =
1

2

[
(∇̃FφY V Fφ)X

H + Fφ

(
(∇̃Y V Fφ)X

H
)
− Fφ

(
(∇̃XHFφ)Y

V
)]

=
1

2

[
− ∇̃(φY )V (φX)H − Fφ(∇̃(φY )V X

H)− Fφ

(
∇̃Y V (φX)H

)
−∇̃Y V XH − Fφ

(
∇̃XH (φY )V

)
+ ∇̃XHY V

]
=

1

2

[
− 1

2
(R(φu, φY )φX)H +

1

2
(φR(φu, φY )X)H

+
1

2
(φR(φu, Y )φX)H − 1

2
(R(φu, Y )X)H

−(φ∇XφY )V +
1

2
(φR(φu, φY )X)H

+(∇XY )V +
1

2
(R(φu, Y )X)H

]
.

Using (2.6) we get

S(XH , Y V ) =
1

2
(R(φu, Y )X)H .

The other formulas are obtained by a similar calculation.

Theorem 4.9. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) be its tangent

bundle equipped with the φ-Sasaki metric and the almost product structure Fφ defined by

(4.11). Then the almost product connection ∇̂ defined by (4.14) is as follows,

(1) ∇̂XHY H = (∇XY )H ,

(2) ∇̂XHY V = (∇XY )V ,

(3) ∇̂XV Y H =
3

2
(R(φu,X)Y )H ,

(4) ∇̂XV Y V = 0,

for all X,Y ∈ ℑ1
0(M).

Proof. The proof of Theorem 4.9 follows directly from Theorem 3.1, Lemma 4.4 and

formula (4.14).

Lemma 4.5. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) be its tangent

bundle equipped with the φ-Sasaki metric and the almost product structure Fφ defined by
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(4.11) and T̂ denote the torsion tensor of ∇̂, then we have:

(1) T̂ (XH , Y H) = (R(X,Y )u)V ,

(2) T̂ (XH , Y V ) = −3

2
(R(φu, Y )X)H ,

(3) T̂ (XV , Y H) =
3

2
(R(φu,X)Y )H ,

(4) T̂ (XV , Y V ) = 0,

for all X,Y ∈ ℑ1
0(M).

Proof. The proof of Lemma 4.5 follows directly from Lemma 4.4 and formula

T̂ (X̃, Ỹ ) = ∇̂
X̃
Ỹ − ∇̂

Ỹ
X̃ − [X̃, Ỹ ]

= S(Ỹ , X̃)− S(X̃, Ỹ )

for all X̃, Ỹ ∈ ℑ1
0(TM).

From Lemma 4.5 we obtain

Theorem 4.10. Let (M2m, φ, g) be a para-Kähler-Norden manifold, (TM, gφ) be its tangent

bundle equipped with the φ-Sasaki metric and the almost product structure Fφ defined by

(4.11), then ∇̂ is symmetric if and only if M is flat.
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