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EDITORIAL

BAYRAM ŞAHIN ID

Our journal INTERNATIONAL JOURNAL OF MAPS IN MATHEMATICS (IJMM) has

completed three years. The year 2020 has been a tough year for us as for everyone. Still, the

year 2020 was a year of some important developments for our journal. In 2020, IJMM has

been included in the lists by international important indexes MATHSCINET (Mathematical

Reviews), Road, Journal Factor, World Catalog of Scientific Journal, Scientific Indexing

Services, Journals Directory. IJMM will continue to be the best platform for scientists

conducting research in the fields determined by the journal, with an emphasis on quality.

We would like to thank our authors, referees, editorial board, technical team and you, our

readers, who contributed to our journal during this period. We wish everyone a happy and

healthy new year.
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WEYL CONNECTION ON TANGENT BUNDLE OF HYPERSURFACE

RABIA CAKAN AKPINAR ID ∗

Abstract. In this paper, we determine the complete lift of weyl connection to tangent

bundle of hypersurface. And we obtain some certain results regarding to the tangent bun-

dle.

Keywords: Hypersurface, Weyl connection

2010 Mathematics Subject Classification: 53B25, 53B05.

1. Introduction

Let M be an m−dimensional Riemannian manifold with a linear connection ∇̂. Wong

obtained some properties of a recurrent tensor field K of type (r, s) on a manifold M endowed

with a linear connection ∇̂. A non zero tensor field K on manifold M is said to be recurrent

if there exist a 1-form such that ∇̂K = ω⊗K [15]. An linear connection ∇ on a Riemannian

manifold with Riemannian metric ĝ is called a recurrent metric connection if there exist a

diferentiable 1-form ω such that

(
∇

X̂
ĝ
) (
Ŷ , Ẑ

)
= ω̂

(
X̂
)
ĝ
(
Ŷ , Ẑ

)
for any vector fields X̂, Ŷ , Ẑ in M , ω is called the 1-form of recurrence [10]. The torsion

tensor T̂ of ∇̂ is given by

T̂
(
X̂, Ŷ

)
= ∇̂

X̂
Ŷ − ∇̂

Ŷ
X̂ −

[
X̂, Ŷ

]
(1.1)
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for any vector fields X̂ and Ŷ in M . The connection ∇̂ is symmetric if its torsion tensor

T̂ vanishes, i.e., T̂ = 0. Then the symmetric ∇ connection is called a symmetric recurrent

metric connection on M . The Weyl connection is constructed with ω̂ and P̂ and given by

[5], [14]

∇
X̂
Ŷ = ∇̂

X̂
Ŷ − 1

2

(
ω̂
(
X̂
)
Ŷ + ω̂

(
Ŷ
)
X̂ − ĝ

(
X̂, Ŷ

)
P̂
)

(1.2)

which satifies

(
∇

X̂
ĝ
) (
Ŷ , Ẑ

)
= ω̂

(
X̂
)
ĝ
(
Ŷ , Ẑ

)
(1.3)

for any vector fields X̂ and Ŷ in (M, ĝ), where ∇̂ is a Riemannian connnection in (M, ĝ)

and P̂ is a vector field defined by ĝ
(
P̂ , X̂

)
= ω̂

(
X̂
)

. The Weyl connection is a symmetric

recurrent metric connection. The Weyl connection have been studied many authors [2], [6],

[12].

The study of differential geometry of tangent bundles was started in the early 1960s. The

prolongations called complete, vertical and horizontal lifts of tensor field and connection to

tangent bundle have been studied by Yano and Ishihara [17]. The tangent bundle have been

studied many authors [3], [9], [13], [16]. Tani [11] improved the theory of hypersurfaces

prolonged to tangent bundle with respect to the complete lift of metric tensor of Riemannian

manifold. Gözütok and Esin [4] have studied the complete lift of semi-symmetric metric

connection to tangent bundle of the hypersurfaces. Khan and his collaborators [7], [8] have

studied lifts of quarter-symmetric semi-metric and semi-symmetric semi-metric connections

to tangent bundle of the hypersurfaces. This paper is devoted to the study the complete lift

of Weyl connection to tangent bundle of the hypersurfaces. And we find certain results on

totally umbilical and geodesic to the tangent bundle.

2. Preliminaries

Let M be a Riemannian manifold and we denote by T (M) it is tangent bundle with the

projection πM : T (M) → M and by Tp (M) its tangent space at a point p of M . =r
s (M) is

the set of all tensor fields of type (r, s) in M .

Let f, t ∈ =0
0 (M), X ∈ =1

0 (M), ω ∈ =0
1 (M), ϕ ∈ =1

1 (M), g ∈ =0
2 (M), T ∈ =1

2 (M) be a

function, a vector field, a 1-form, type- (1, 1), type-(0, 2), type-(1, 2) tensor field, respectively.

We denote, respectively, by V f , VX, V ω, V ϕ, V g, V T their vertical lifts and by Cf , CX, Cω,
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Cϕ, Cg, CT their complete lifts. This lifts have the properties [17]:[
CX̂,C Ŷ

]
= C

[
X̂, Ŷ

]
Cϕ̂
(
CX̂
)

= C
(
ϕ̂
(
X̂
))

V ω̂
(
CX̂
)

= V
(
ω̂
(
X̂
))

C ω̂
(
CX̂
)

= C
(
ω̂
(
X̂
))

C ĝ
(
V X̂,C Ŷ

)
= C ĝ

(
CX̂,V Ŷ

)
= V

(
ĝ
(
X̂, Ŷ

))
C ĝ
(
CX̂,C Ŷ

)
= C

(
ĝ
(
X̂, Ŷ

))
C∇̂CX̂

C Ŷ = C
(
∇̂

X̂
Ŷ
)

C∇̂CX̂
V Ŷ = V

(
∇̂

X̂
Ŷ
)

C T̂
(
CX̂,C Ŷ

)
= C

(
T̂
(
X̂, Ŷ

))
Cf V t+ V f Ct = C (ft) .

(2.4)

Let S be an manifold with dimension (m− 1) imbedded differentially as a submanifold in

(M, ĝ) and denote by ı : S →M its imbedding [11]. The differential mapping dı is a mapping

from TS into TM , which is called the tangent map of ı, where TS and TM are the tangent

bundles of S and M , respectively. The tangent map dı is denoted by B. The tangent map

of B is denoted by B̃ : T (TS)→ T (TM).

The hypersurface S is also a Riemannian manifold with the induced metric g defined by

g (X,Y ) = ĝ (BX,BY ) for arbitrary X, Y ∈ =1
0 (S). Thus, ∇ is Riemannian connection with

the induced connection on (S, g) from ∇̂ defined by

∇̂BX BY = B (∇XY ) + h (X,Y )N (2.5)

for any X, Y ∈ =1
0 (S), where N is unit normal vector field on (S, g) and h is the second

fundamental tensor field of (S, g) [11]. Also, the following equality

h (X,Y ) = g (HX,Y )

for any X, Y ∈ =1
0 (S), where H ∈ =1

1 (S).

If h is equal to zero, S is called totally geodesic with respect to ∇ and if h is proportional

to g, then S is called totally umbilical with respect to ∇ [11].

3. Weyl connection on tangent bundle of hypersurface

◦
∇ is a Weyl connection induced on the hypersurface S from ∇, which satisfies the equation

∇BX BY = B

(
◦
∇XY

)
+m (X,Y )N (3.6)
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for X, Y ∈ =1
0 (S), where m is a type-(0, 2) tensor field in S. Defining M = H − ηI, we

obtain the equality

m (X,Y ) = g (MX,Y ) (3.7)

for any X, Y ∈ =1
0 (S), where I is the unit type-(1, 1) tensor field in S.

If m is equal to zero, then S is called totally geodesic with respect to
◦
∇ and if m is

proportional to g, then S is called totally umbilical with respect to
◦
∇.

Theorem 3.1. The connection induced on a hypersurface S of a Riemannian manifold with

a Weyl connection with respect to the unit normal is also a Weyl connection.

Proof. From (1.2) we obtain

∇BX BY = ∇̂BX BY − 1

2

(
ω̂ (BX)BY + ω̂ (BY )BX − ĝ (BX,BY ) P̂

)
(3.8)

for arbitrary vector fields X,Y ∈ S. From equations (2.5), (3.6), (3.8),

B

(
◦
∇XY

)
+m (X,Y )N = B (∇XY ) + h (X,Y )N − 1

2
ω̂ (BX)BY (3.9)

−1

2
ω̂ (BY )BX +

1

2
ĝ (BX,BY ) (BP + ηN)

where we put P̂ = BP + ηN , where η is a function, P is a vector field and ω is a 1-form in

S determined by ω (X) = ω̂ (BX).

By taking the tangential and normal parts from both the sides, we get, respectively,

◦
∇XY = ∇XY −

1

2
(ω (X)Y + ω (Y )X − g (X,Y )P ) ,

m (X,Y ) = h (X,Y ) +
1

2
ηg (X,Y ) .

The complete lift C ĝ of Riemannian metric ĝ is the pseudo-Riemannian metric in TM .

Therefore, if we denote by g̃ the induced metric on TS from C ĝ , then

g̃
(
CX,C Y

)
= C ĝ

(
B̃ CX, B̃ CY

)
for arbitrary vector fields X,Y ∈ =1

0 (S).

Thus, the complete lift C∇̂ of the Riemannian connection ∇̂ in (M, ĝ) is the Riemannian

connection in the pseudo-Riemannian manifold
(
TM,C ĝ

)
. The complete lift C∇ of the

induced connection ∇ on (S, g) is also the Riemannian connection in (T (S) , g̃).

Theorem 3.2. If T̂ is torsion tensor of ∇̂ in (M, ĝ), then C T̂ is torsion tensor of C∇̂ in(
TM,C ĝ

)
[17].
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Now we obtain the main theorem of this study.

Theorem 3.3. Let ∇ a Weyl connection with respect to ∇̂ Riemannian connection in (M, ĝ).

Then, C∇ is also a Weyl connection with respect to C∇̂ Riemannian connection in
(
TM,C ĝ

)
.

Proof. Firstly, let’s show that V ω̂
(
B̃ CX

)
= V (ω̂ (BX)) and C ω̂

(
B̃ CX

)
= C (ω̂ (BX)).

In [11], using V (BX) = B̃ VX and C (BX) = B̃ CX for X ∈ =1
0 (S) we get

V ω̂
(
B̃ CX

)
= V ω̂ C (BX) = ]

(
V ω̂

(
CX̂
))

= ] V
(
ω̂
(
X̂
))

= V (ω̂ (BX)) ,

C ω̂
(
B̃ CX

)
= C ω̂ C (BX) = ]

(
C ω̂

(
CX̂
))

= ] C
(
ω̂
(
X̂
))

= C (ω̂ (BX))

for arbitrary X,Y ∈ =1
0 (S). Here, we denote the operation of restriciton to π−1

M (ı (S)) by

]. Also, we denote the vertical and complete lift operations on π−1
M (ı (S)) by V and C,

respectively. Now taking the complete lift of both sides of the equation (1.2) and using the

equations (2.4) we get

C
(
∇BX BY

)
= C

(
∇̂BX BY

)
− 1

2
C (ω̂ (BX) (BY ))− 1

2
C (ω̂ (BY ) (BX))

+
1

2
C
(
ĝ (BX,BY ) P̂

)

C
(
∇BX BY

)
= C

(
∇̂BX BY

)
− 1

2
C (ω̂ (BX)) V (BY )− 1

2
V (ω̂ (BX)) C (BY )

−1

2
C (ω̂ (BY )) V (BX)− 1

2
V (ω̂ (BY )) C (BX)

+
1

2
C (ĝ (BX,BY )) V P̂ +

1

2
V (ĝ (BX,BY )) C P̂

C∇
B̃ CX

B̃ CY = C∇̂
B̃ CX

B̃ CY − 1

2
C ω̂
(
B̃ CX

)(
B̃ V Y

)
− 1

2
V ω̂
(
B̃ CX

)(
B̃ CY

)
−1

2
C ω̂
(
B̃ CY

)(
B̃ VX

)
− 1

2
V ω̂
(
B̃ CY

)(
B̃ CX

)
+

1

2
C ĝ
(
B̃ CX, B̃ CY

)
V P̂ +

1

2
C ĝ
(
B̃ VX, B̃ CY

)
C P̂

and

C∇
B̃ CY

B̃ CX = C∇̂
B̃ CY

B̃ CX − 1

2
C ω̂
(
B̃ CY

)(
B̃ VX

)
− 1

2
V ω̂
(
B̃ CY

)(
B̃ CX

)
−1

2
C ω̂
(
B̃ CX

)(
B̃ V Y

)
− 1

2
V ω̂
(
B̃ CX

)(
B̃ CY

)
+

1

2
C ĝ
(
B̃ CY, B̃ CX

)
V P̂ +

1

2
C ĝ
(
B̃ V Y, B̃ CX

)
C P̂ .
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Then, we have

CT
(
B̃ CX, B̃ CY

)
= C∇

B̃ CX
B̃ CY − C∇

B̃ CY
B̃ CX −

[
B̃ CX, B̃ CY

]
= C∇̂

B̃ CX
B̃ CY − C∇̂

B̃ CY
B̃ CX −

[
B̃ CX, B̃ CY

]
= C T̂

(
B̃ CX, B̃ CY

)
= C

(
T̂ (BX,BY )

)
= 0.

By computing

C ĝ
(
C∇

B̃ CX
B̃ CY, B̃ CZ

)
+ C ĝ

(
B̃ CY, C∇

B̃ CX
B̃ CZ

)
= C ĝ( C∇̂

B̃ CX
B̃ CY − 1

2
C ω̂
(
B̃ CX

)(
B̃ V Y

)
− 1

2
V ω̂
(
B̃ CX

)(
B̃ CY

)
−1

2
C ω̂
(
B̃ CY

)(
B̃ VX

)
− 1

2
V ω̂
(
B̃ CY

)(
B̃ CX

)
+

1

2
C ĝ
(
B̃ CX, B̃ CY

)
V P̂ +

1

2
C ĝ
(
B̃ VX, B̃ CY

)
C P̂ , B̃ CZ)

+ C ĝ( B̃ CY, C∇̂
B̃ CX

B̃ CZ − 1

2
C ω̂
(
B̃ CX

)(
B̃ V Z

)
−1

2
V ω̂
(
B̃ CX

)(
B̃ CZ

)
− 1

2
C ω̂
(
B̃ CZ

)(
B̃ VX

)
−1

2
V ω̂
(
B̃ CZ

)(
B̃ CX

)
+

1

2
C ĝ
(
B̃ CX, B̃ CZ

)
V P̂

+
1

2
C ĝ
(
B̃ VX, B̃ CZ

)
C P̂ )

= C ĝ
(
C∇̂

B̃ CX
B̃ CY, B̃ CZ

)
+ C ĝ

(
B̃ CY, C∇̂

B̃ CX
B̃ CZ

)
−1

2
C (ω̂ (BX)) C ĝ

(
B̃ V Y, B̃ CZ

)
− 1

2
V (ω̂ (BX)) C ĝ

(
B̃ CY, B̃ CZ

)
−1

2
C (ω̂ (BY )) C ĝ

(
B̃ VX, B̃ CZ

)
− 1

2
V (ω̂ (BY )) C ĝ

(
B̃ CX, B̃ CZ

)
−1

2
C (ω̂ (BX)) C ĝ

(
B̃ CY, B̃ V Z

)
− 1

2
V (ω̂ (BX)) C ĝ

(
B̃ CY, B̃ CZ

)
−1

2
C (ω̂ (BZ)) C ĝ

(
B̃ CY, B̃ VX

)
− 1

2
V (ω̂ (BZ)) C ĝ

(
B̃ CY, B̃ CX

)
+

1

2
C ĝ
(
B̃ CX, B̃ CY

)
C ĝ
(
V P̂ , B̃ CZ

)
+

1

2
C ĝ
(
B̃ VX, B̃ CY

)
C ĝ
(
C P̂ , B̃ CZ

)
+

1

2
C ĝ
(
B̃ CX, B̃ CZ

)
C ĝ
(
B̃ CY, V P̂

)
+

1

2
C ĝ
(
B̃ VX, B̃ CZ

)
C ĝ
(
B̃ CY, C P̂

)
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= C ĝ
(
C∇̂

B̃ CX
B̃ CY, B̃ CZ

)
+ C ĝ

(
B̃ CY, C∇̂

B̃ CX
B̃ CZ

)
−1

2
C (ω̂ (BX)) V (ĝ (BY, BZ))− 1

2
V (ω̂ (BX)) C (ĝ (BY, BZ))

−1

2
C (ω̂ (BY )) V (ĝ (BX, BZ))− 1

2
V (ω̂ (BY )) C (ĝ (BX, BZ))

−1

2
C (ω̂ (BX)) V (ĝ (BY, BZ))− 1

2
V (ω̂ (BX)) C (ĝ (BY, BZ))

−1

2
C (ω̂ (BZ)) V (ĝ (BY, BX))− 1

2
V (ω̂ (BZ)) C (ĝ (BY, BX))

+
1

2
C (ĝ ( BX, BY )) V (ω̂ (BZ)) +

1

2
V (ĝ ( BX, BY )) C (ω̂ (BZ))

+
1

2
C (ĝ ( BX, BZ)) V (ω̂ (BY )) +

1

2
V (ĝ ( BX, BZ)) C (ω̂ (BY ))

= C ĝ
(
C∇̂

B̃ CX
B̃ CY, B̃ CZ

)
+ C ĝ

(
B̃ CY, C∇̂

B̃ CX
B̃ CZ

)
− C (ω̂ (BX)) V (ĝ (BY, BZ))− V (ω̂ (BX)) C (ĝ (BY, BZ))

= C ĝ
(
C∇̂

B̃ CX
B̃ CY, B̃ CZ

)
+ C ĝ

(
B̃ CY, C∇̂

B̃ CX
B̃ CZ

)
− C (ω̂ (BX) ĝ (BY, BZ))

=
(
B̃ CX

)
C ĝ
(
B̃ CY, B̃ CZ

)
− C (ω̂ (BX) ĝ (BY, BZ))

And from following equation(
B̃ CX

)
C ĝ
(
B̃ CY, B̃ CZ

)
=

(
C∇

B̃ CX
C ĝ
) (
B̃ CY, B̃ CZ

)
+ C ĝ

(
C∇

B̃ CX
B̃ CY, B̃ CZ

)
+ C ĝ

(
B̃ CY, C∇

B̃ CX
B̃ CZ

)
we get (

C∇
B̃ CX

C ĝ
) (
B̃ CY, B̃ CZ

)
= C (ω̂ (BX) ĝ (BY, BZ)) .

Theorem 3.4. Let
◦
∇ be a Weyl connection with respect to ∇ Riemannian connection in

(S, g). Then C
◦
∇ is also Weyl connection with respect to C∇ Riemannian connection in

(TS, g̃).

Proof. Taking the complete lift on both the sides of equation (3.8) and using equations

(2.4), we get

C
(
∇BX BY

)
= C

(
∇̂BX BY

)
− 1

2
C (ω̂ (BX)BY )− 1

2
C (ω̂ (BY )BX)

+
1

2
C
(
ĝ (BX,BY ) P̂

)



INT. J. MAPS IN MATH. / WEYL CONNECTION ON TANGENT BUNDLE OF HYPERSURFACE 9

C
(
∇BX BY

)
= C

(
∇̂BX BY

)
− 1

2
C (ω̂ (BX)) V (BY )

−1

2
V (ω̂ (BX)) C (BY )− 1

2
C (ω̂ (BY )) V (BX)

−1

2
V (ω̂ (BY )) C (BX) +

1

2
C (ĝ (BX,BY )) V P̂

+
1

2
V (ĝ (BX,BY )) C P̂

C∇
B̃ CX

B̃ CY = C∇̂
B̃ CX

B̃ CY − 1

2
C ω̂
(
B̃ CX

)(
B̃ V Y

)
−1

2
V ω̂
(
B̃ CX

)(
B̃ CY

)
− 1

2
C ω̂
(
B̃ CY

)(
B̃ VX

)
−1

2
V ω̂
(
B̃ CY

)(
B̃ CX

)
+

1

2
C ĝ

(
B̃ CX, B̃ CY

)
V P̂

+
1

2
C ĝ

(
B̃ VX, B̃ CY

)
C P̂

for arbitrary X, Y ∈ S. Hence, from equations (2.5) and (3.6) we obtain

C

(
B

(
◦
∇XY

)
+m (X,Y )N

)
= C (B (∇XY ) + h (X,Y )N)

−1

2
C (ω̂ (BX)BY )− 1

2
C (ω̂ (BY )BX)

+
1

2
C (ĝ (BX, BY ) (BP + ηN))

= C (B (∇XY ) + h (X,Y )N)− 1

2
C ω̂
(
B̃ CX

)
B̃ V Y

−1

2
V ω̂
(
B̃ CX

)
B̃ CY − 1

2
C ω̂
(
B̃ CY

)
B̃ VX

−1

2
V ω̂
(
B̃ CY

)
B̃ CX

+
1

2
C ĝ
(
B̃ CX, B̃ CY

)(
B̃ V P + V η VN

)
+

1

2
C ĝ
(
B̃ VX, B̃ CY

)(
B̃ CP + Cη VN + V η CN

)

B̃ C

(
◦
∇XY

)
+ Vm

(
CX, CY

)
CN + Cm

(
CX, CY

)
VN

= B̃ C (∇XY ) + V h
(

CX, CY
)

CN + Ch
(

CX, CY
)

VN

−1

2
C ω̂
(
B̃ CX

)
B̃ V Y − 1

2
V ω̂
(
B̃ CX

)
B̃ CY

−1

2
C ω̂
(
B̃ CY

)
B̃ VX − 1

2
V ω̂
(
B̃ CY

)(
B̃ CX

)
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+
1

2
C ĝ
(
B̃ CX, B̃ CY

)
B̃ V P +

1

2
V η C ĝ

(
B̃ CX, B̃ CY

)
VN

+
1

2
C ĝ
(
B̃ VX, B̃ CY

)
B̃ CP +

1

2
Cη C ĝ

(
B̃ VX, B̃ CY

)
VN

+
1

2
V η C ĝ

(
B̃ VX, B̃ CY

)
CN

Moreover we get

B̃ C

(
◦
∇XY

)
= B̃ C (∇XY )− 1

2
C ω̂
(
B̃ CX

)
B̃ V Y − 1

2
V ω̂
(
B̃ CX

)
B̃ CY

−1

2
C ω̂
(
B̃ CY

)
B̃ VX − 1

2
V ω̂
(
B̃ CY

)
B̃ CX

+
1

2
C ĝ
(
B̃ CX, B̃ CY

)
B̃ V P +

1

2
C ĝ
(
B̃ VX, B̃ CY

)
B̃ CP

and

Vm
(

CX, CY
)

CN + Cm
(

CX, CY
)

VN

=

(
V h
(

CX, CY
)

+
1

2
V η C ĝ

(
B̃ VX, B̃ CY

) )
CN

+

(
Ch
(

CX, CY
)

+
1

2
V η C ĝ

(
B̃ CX, B̃ CY

)
+

1

2
Cη C ĝ

(
B̃ VX, B̃ CY

))
VN.

From the equations (2.4), it follows that

C

(
◦
∇XY

)
= C (∇XY )− 1

2
Cω
(

CX
)

V Y − 1

2
V ω
(

CX
)

CY − 1

2
Cω
(

CY
)

VX

−1

2
V ω
(

CY
)

CX +
1

2
g̃
(

CX, CY
)

V P +
1

2
g̃
(

VX, CY
)

CP

and finally, we obtain

C
◦
∇CX

CY = C∇CX
CY − 1

2
Cω
(

CX
)

V Y − 1

2
V ω
(

CX
)

CY

−1

2
Cω
(

CY
)

VX − 1

2
V ω
(

CY
)

CX

+
1

2
g̃
(

CX, CY
)

V P +
1

2
g̃
(

VX, CY
)

CP,

C
◦
∇CY

CX = C∇CY
CX − 1

2
Cω
(

CY
)

VX − 1

2
V ω
(

CY
)

CX

−1

2
Cω
(

CX
)

V Y − 1

2
V ω
(

CX
)

CY

+
1

2
g̃
(

CY, CX
)

V P +
1

2
g̃
(

V Y, CX
)

CP.

Thus, we have

C
◦
T
(

CX, CY
)

= C
◦
∇CX

CY −C
◦
∇CY

CX −
[

CX, CY
]

= 0.
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Similarly

g̃

(
C

◦
∇ CX

CY, CZ

)
+ g̃

(
CY, C

◦
∇ CX

CZ

)

= g̃( C∇ CX
CY − 1

2
Cω
(

CX
)

V Y − 1

2
V ω
(

CX
)

CY

−1

2
Cω
(

CY
)

VX − 1

2
V ω
(

CY
)

CX

+
1

2
g̃
(

CX, CY
)

V P +
1

2
g̃
(

VX, CY
)

CP, CZ)

+ g̃( CY, C∇ CX
CZ − 1

2
Cω
(

CX
)

V Z − 1

2
V ω
(

CX
)

CZ

−1

2
Cω
(

CZ
)

VX − 1

2
V ω
(

CZ
)

CX

+
1

2
g̃
(

CX, CZ
)

V P +
1

2
g̃
(

VX, CZ
)

CP )

= g̃
(
C∇ CX

CY, CZ
)

+ g̃
(

CY, C∇ CX
CZ
)

−1

2
C (ω (X)) g̃

(
V Y, CZ

)
− 1

2
V (ω (X)) g̃

(
CY, CZ

)
−1

2
C (ω (Y )) g̃

(
VX, CZ

)
− 1

2
V (ω (Y )) g̃

(
CX, CZ

)
−1

2
C (ω (X)) g̃

(
CY, V Z

)
− 1

2
V (ω (X)) g̃

(
CY, CZ

)
−1

2
C (ω (Z)) g̃

(
CY, VX

)
− 1

2
V (ω (Z)) g̃

(
CY, CX

)
+

1

2
g̃
(

CX, CY
)
g̃
(

V P, CZ
)

+
1

2
g̃
(

VX, CY
)
g̃
(

CP, CZ
)

+
1

2
g̃
(

CX, CZ
)
g̃
(

CY, V P
)

+
1

2
g̃
(

VX, CZ
)
g̃
(

CY, CP
)

= g̃
(
C∇ CX

CY, CZ
)

+ g̃
(

CY, C∇ CX
CZ
)

− C (ω (X)) V (g (Y, Z))− V (ω (X)) C (g (Y, Z))

= g̃
(
C∇ CX

CY, CZ
)

+ g̃
(

CY, C∇ CX
CZ
)
− C (ω (X) g (Y, Z))

= CX g̃
(

CY, CZ
)
− C (ω (X) g (Y, Z)) .

And from following equation

CX g̃
(

CY, CZ
)

=

(
C

◦
∇ CX g̃

)(
CY, CZ

)
+ g̃

(
C

◦
∇ CX

CY, CZ

)
+ g̃

(
CY, C

◦
∇ CX

CZ

)
we get (

C
◦
∇ CX g̃

)(
CY, CZ

)
= C (ω (X) g (Y, Z)) .
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The Weyl connection C
◦
∇ on (TS, g̃) can be given by

C
◦
∇CX

CY = C∇CX
CY − 1

2
Cω
(

CX
)

V Y − 1

2
V ω
(

CX
)

CY − 1

2
Cω
(

CY
)

VX

−1

2
V ω
(

CY
)

CX +
1

2
g̃
(

CX, CY
)

V P +
1

2
g̃
(

VX, CY
)

CP

and taking the complete lift of both sides of the equations (3.6) we obtain

C∇
B̃ CX

B̃ CY = B̃

(
C

◦
∇CX

CY

)
+ Vm

(
CX, CY

)
CN + Cm

(
CX, CY

)
VN

From the equation (2.4), it follows that

Vm
(

CX, CY
)

= V h
(

CX, CY
)

+
1

2
V η C ĝ

(
B̃ VX, B̃ CY

)

Cm
(

CX, CY
)

= Ch
(

CX, CY
)

+
1

2
V η C ĝ

(
B̃ CX, B̃ CY

)
+

1

2
Cη C ĝ

(
B̃ VX, B̃ CY

)
.

According to [11], TS is totally umbilical if and only if there exist differentiable functions λ

and µ, such that

Vm
(
X̃, Ỹ

)
= λg̃

(
X̃, Ỹ

)
Cm

(
X̃, Ỹ

)
= µg̃

(
X̃, Ỹ

)
for arbitrary vector fields X̃, Ỹ ∈ =1

0 (TS). If both λ and µ vanish, then TS is totally

geodesic. It is travial to prove the following theorems by using the equations (2.4).

Theorem 3.5. TS is totally umbilical with respect to the Weyl connection C
◦
∇ if and only

if it is totally umbilical or totally geodesic with respect to the Riemannian connection C∇.

Theorem 3.6. TS is totally umbilical with respect to the Weyl connection C
◦
∇ if and only

if S is totally umbilical with respect to the Weyl connection
◦
∇.

Theorem 3.7. TS is totally geodesic with respect to the Weyl connection C
◦
∇ if and only if

it is totally geodesic with respect to the Riemannian connection C∇ and the vector field P̂

is tangent to S.

Theorem 3.8. TS is totally geodesic with respect to the Weyl connection C
◦
∇ if and only

if S is totally geodesic with respect to the Weyl connection
◦
∇.



INT. J. MAPS IN MATH. / WEYL CONNECTION ON TANGENT BUNDLE OF HYPERSURFACE 13

References

[1] Chen, B. Y. (2019). Geometry of Submanifolds, New York: Marcel Dekker Inc.

[2] Crasmareanu, M. (2012). Recurrent metrics in the geometry of second order differential equations. B Iran

Math Soc, 38(2), 391-401.
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1. Introduction

The history of the view of what constitutes geometry has been changed radically on a

number of occasions. For centuries, it was thought that the single aim of geometry is the

through investigation of the properties of ordinary 3-dimensional Euclidean space. That view

was broadened by Gauss in 1816, by Bolyai 1824 and by Lobachevski in 1826, independently.

Furthermore, the explorations and views of Riemann [15] and Klein [11] being a synthesis

of the geometric views of Cayley showed that there exist other (non-Euclidean) geometric

systems. Until this time, many technical and popular resources have been written about

the geometry of non-Euclidean space. Among these space, there are Minkowski space [13],

Galilean and pseudo-Galilean space [1, 10, 14, 16] and so on.
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It should be noted that one of the pioneer books of the Galilean geometry is the Yaglom’s

book [19]. In that book was discussed on the physical basis of this geometry closely related

with Galilean’s principle of relativity, i.e., Newtonian mechanics. In the last decade, the

Galilean and pseudo-Galilean space were used by several researchers as an ambient space for

the well-known Euclidean concepts (see in [3, 4, 5, 6, 7, 9, 12, 17, 18]).

In this paper, we first introduce the notations that we are going to use and give a brief

summary of basic definitions in theory of surfaces in Galilean 3-space. Then, we define

two types of Translation-Factorable (TF-) surfaces in Galilean 3-space, by considering the

definition of these surfaces given in [8] in Euclidean and Lorentzian 3-space. Also, we give

the complete classification of such surfaces with vanishing Gaussian curvature and mean

curvature and also some explicit graphics of them.

2. Preliminaries

First, we would like to give a brief summary of basic definitions, facts and equations in

the theory of surfaces of Galilean 3-space (see for detail, [14, 16, 19]).

The Galilean 3−space G3 arises in a Cayley-Klein way by pointing out an absolute figure

{ω, f, J} in the 3-dimensional real projective space P3(R) where ω is the ideal (absolute)

plane, f is the absolute line and J is the fixed elliptic involution of points of f . Then the

homogeneous coordinates (x0 : x1 : x2 : x3) are introduced such that ω is given by x0 = 0, f

is given by x0 = x1 = 0 and J , by (0 : 0 : x2 : x3) 7→ (0 : 0 : −x3 : x2).

In affine coordinates defined by (x0 : x1 : x2 : x3) = (1 : x1 : x2 : x3), the distance between

two points Pi = (xi, yi, zi) with i ∈ {1, 2} is defined by the formula

dP1P2 =

 |x2 − x1| if x1 6= x2,√
(y2 − y1)2 + (z2 − z1)2 if x1 = x2

The group of motions of G3 is a six-parameter group. Regarding this group of motions,

except the absolute plane, there exist two classes of planes in G3: Euclidean planes that

contain f where the induced metric is Euclidean and isotropic planes that do not contain f

whose induced metric is isotropic. Also, there are four types of lines in G3: isotropic lines

that intersect f , non-isotropic lines that do not intersect f , non-isotropic lines in ω and the

absolute line f , [6].

Let ~X = (x1, x2, x3) be a vector in G3. If x1 = 0, then ~X is called as isotropic; otherwise,

it is said to be non-isotropic. Note that, the x1−axis is non-isotropic while the x2−axis and

the x3−axis are isotropic, for standart coordinates (x1, x2, x3). Moreover, a plane of the form
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x1 = const. is called an Euclidean plane, otherwise isotropic. For two vectors ~X = (x1, x2, x3)

and ~Y = (y1, y2, y3), the Galilean scalar product is given by

〈X,Y 〉 =

 x1y1 if x1 6= 0 or y1 6= 0,

x2y2 + x3y3 if x1 = y1 = 0.

The norm of vector ~X in G3 is defined by
∥∥∥ ~X∥∥∥ :=

√〈
~X, ~X

〉
. If

∥∥∥ ~X∥∥∥ = 1, then ~X is called

as unit vector. Also, the Galilean cross product of the vectors ~X and ~Y of which at least one

is non-isotropic is defined by

~X × ~Y =
(

0, x3y1 − x1y3, x1y2 − x2y1
)
. (2.1)

Assume that U is an open set of R2 and S is a Cr−surface such that r ≥ 2, immersed in

G3 parametrized by

ϕ : U → R2, ϕ(u1, u2) = (ϕ1(u1, u2), ϕ2(u1, u2), ϕ3(u1, u2)) . (2.2)

Let us denote
∂ϕ

∂ui
= ϕ,i,

∂ϕk

∂ui
= (ϕk),i and

∂2ϕk

∂ui∂uj
= (ϕk),ij where 1 ≤ k ≤ 3 and

1 ≤ i, j ≤ 2. Then a surface is admissible (i.e., without Euclidean tangent planes) if and

only if (ϕ1),i 6= 0 for some i = 1, 2. Let S ⊂ G3 be a regular admissible surface. We define

the side tangential vector field by

σ =
(ϕ1),1ϕ,2 − (ϕ1),2ϕ,1

W
(2.3)

and a unit normal vector N as

N =
ϕ,1 × ϕ,2

W
(2.4)

where the function W = ‖ϕ,1 × ϕ,2‖, [17].

Now, we introduce the coefficients of the second fundamental form

Lij =

〈
ϕ,ij(ϕ1),1 − (ϕ1),ijϕ,1

(ϕ1),1
, N

〉
=

〈
ϕ,ij(ϕ1),2 − (ϕ1),ijϕ,2

(ϕ1),2
, N

〉
. (2.5)

Consequently, the Gaussian curvature K and the mean curvature H of M are defined by

K =
L11L22 − L2

12

W 2
, (2.6)

H =
1

2

2∑
i,j=1

gijLij , (2.7)

where

g1 =
(ϕ1),2
W

, g2 =
(ϕ1),1
W

and gij = gigj for i, j = 1, 2. (2.8)
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Note that, if M has zero curvatures, i.e., K = 0 or H = 0, then it is called as flat or

minimal, respectively.

2.1. Translation-Factorable Surfaces in Galilean 3-space. In this section, we first

would like to state the following definitions given in [3, 4, 17] :

Definition 2.1. Let M2 be an admissible surface in Galilean space. Then M is called a

factorable surface if it can be locally written as one of the following:

x(s, t) = (s, t, f(s)g(t)), (2.9)

or

x(s, t) = (f(s)g(t), s, t), (2.10)

which are called as first and second kind, respectively. Here f, g are smooth functions of one

variable.

Definition 2.2. Let M2 be an admissible surface in Galilean space. Then M is called a

translation surface if it can be locally written as one of the following:

x(s, t) = (s, t, f(s) + g(t)), (2.11)

or

x(s, t) = (f(s) + g(t), s, t), (2.12)

which are called as first and second kind, respectively. Here f, g are smooth functions of one

variable.

Note that as can be seen from the definitions of translation surfaces or factorable surfaces

given above, there exist some distinction into two types of them coming from the fact that

the x-direction and another direction in the yz-plane play distinct roles due to the degeneracy

of the metric. Now by considering these definitions, we would like to give the definition of

translation-factorable (TF-) surface in Galilean 3-space, firstly defined in [8] in Euclidean

and Lorentzian 3-space, as follows:

Definition 2.3. Let M2 be an admissible surface in Galilean 3-space. Then M is called a

translation-factorable (TF-) surface if it can be locally written as one of the following:

ϕ(s, t) = (s, t, Bf(s)g(t) +A(f(s) + g(t))) , (2.13)
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or

ϕ(s, t) = (Bf(s)g(t) +A(f(s) + g(t)), s, t) , (2.14)

which are called as first and second type, respectively. Here f and g are real functions and

A,B are non-zero constants.

Remark 2.1. From Definition 2.3, one can observe that the surface M given by (2.13) and

(2.14) becomes a factorable surface when A = 0, B 6= 0. Similarly, if one takes B = 0 and

A 6= 0, then surface is a translation surface.

Hence, we are going to consider the case AB 6= 0.

3. Classification of Translation-Factorable surfaces with vanishing

curvature in G3

In this section, we obtain the Gaussian and the mean curvature of TF-surfaces in G3.

Then, we obtain the complete classification of flat and minimal TF-surfaces.

3.1. Type I TF-surfaces with zero curvature. Let M2 be a type I TF-surface in G3

given by (2.13). Then, we have

ϕs = (1, 0, (Bg(t) +A)f ′(s)), (3.15)

ϕt = (0, 1, g′(t)(Bf(s) +A)). (3.16)

In addition by using (2.4), we obtain

N =
1√

1 + g′(t)2(Bf(s) +A)2
(0,−g′(t)(Bf(s) +A), 1). (3.17)

Here by ′, we have denoted derivatives with respect to corresponding parameters. For read-

ability, here and in the rest of the paper, we will drop the explicit dependence of the functions

on the variables and simply write f = f(s) and g = g(t). Now, by combining (3.15)-(3.17)

with (2.5) and (2.8), respectively, we get

L11 =
f ′′(Bg +A)

W
, L12 =

Bf ′g′

W
, L22 =

g′′(Bf +A)

W
, (3.18)

and

g11 = 0, g12 = 0, g22 =
1

W 2
, (3.19)
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where W 2 = 1 + g′(t)2(Bf(s) +A)2. Consequently, (2.6) and (2.7) give

K =
f ′′g′′(Bf +A)(Bg +A)−B2(f ′)2(g′)2

(1 + g′2(Bf +A)2)
, (3.20)

H =
g′′(Bf +A)

2(1 + g′2(Bf +A)2)3/2
, (3.21)

respectively.

Now, we would like to investigate the vanishing curvature problem for TF-surfaces. First,

we examine a type I TF-surface in Galilean 3-space, whose Gaussian curvature is identically

zero.

Theorem 3.1. Let M2 be a type I TF-surface defined by (2.13) in the Galilean 3-space.

Then, M2 is a flat surface if and only if it belongs to one of the following families:

(1) M2 is a part of an isotropic plane,

(2) M2 is an admissible cylindrical surface in G3 parametrized by

ϕ(s, t) = (s, t, C1g(t) + C2) , (3.22)

where C1, C2 are non-zero constant and g is arbitrary function or

ϕ(s, t) = (s, t, C1f(s) + C2) (3.23)

where C1, C2 are non-zero constant and f is arbitrary function.

(3) f and g are given by

f(s) = − 1

B
eB(c1s+c2) +

A

B
, g(t) = − 1

B
eB(c1t+c2) +

A

B
. (3.24)

(4) f and g are given by

f(s) = −A
B

+B
C

C−1

(
(1− C)(c1s+ c2)

) 1
1−C

, g(t) = −A
B

+B
1

C−1

(
(1− 1

C
)(c1t+ c2)

) C
C−1

, (3.25)

where C 6= 1 is non-zero constant.

Proof. Let M2 be a type I TF-flat surface. Thus, from (3.20), we have

f ′′g′′(Bf +A)(Bg +A)−B2(f ′)2(g′)2 = 0. (3.26)

Let us consider on the following possibilities:

Case (1): f ′ = 0 and g′ = 0. Then, the equation (3.26) is trivially satisfied. By considering

these assumptions in (2.13), respectively, we obtain M2 is an open part of plane. Thus, we

have Case (1) of Theorem 3.1.
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Case (2): Either f ′ = 0 or g′ = 0. First, assume that f ′ = 0, i.e., f be constant. In case,

the equation (3.26) is trivially satisfied. But, in case g is a arbitrary smooth function. Thus,

we get (3.22). Similarly, by considering the assumption of g as g′ = 0, we can get (3.23) in

Theorem 3.1.

Case (3): Let f ′′ = 0 or g′′ = 0, but not both. First, assume that f ′′ = 0, i.e., f be

a linear function. In this case, one get g′ = 0 to provide the equation (3.26). Second, let

g′′ = 0. Then by the similar way, f ′ = 0 must be. Note that one can easily see that these

cases are covered by Case (2).

Case (4): Let f ′, g′, f ′′ and g′′ be non-zero. Then, the equation (3.26) can be rewritten

as

f ′′(A+Bf)

B(f ′)2
=

B(g′)2

g′′(A+Bg)
= C, (3.27)

for non-zero constant C. We are going to consider the following cases seperately:

Case (4a): C = 1. In this case (3.27) implies that

f ′′(A+Bf) = B(f ′)2 and B(g′)2 = g′′(A+Bg), (3.28)

from which, we get (3.24) in Case (3) in Theorem 3.1.

Case (4b): C 6= 1. In this case we solve (3.27) to obtain (3.25).

Conversely, a direct computation yields that the Gaussian curvature of each of surfaces

given in Theorem 3.1 vanishes identically.

Figure 1. A type I TF-flat surfaces parametrized by (3.24) and (3.25), respectively.

Now, we examine a type I TF-surface in Galilean 3-space, whose mean curvature is iden-

tically zero.

Theorem 3.2. Let M2 be a type I TF-surface defined by (2.13) in the Galilean 3-space.

Then, M2 is a minimal surface if and only if it is either
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(1) an open part of the plane z = −A2

B or

(2) a ruled surface of type C in G3 parametrized by

ϕ(s, t) = (s, 0, H(s))) + t (0, 1, F (s)) (3.29)

where F (s) = a(Bf +A) and H(s) = Af + b(A+B).

Proof. Let M2 be a type I TF-minimal surface. Thus, from (3.21), it is clear that is

sufficient that

g′′(Bf +A) = 0. (3.30)

Let us consider on the following possibilities:

Case (1): f = −A
B . Then the surface given in (2.13) can be reparametrized as ϕ(s, t) =(

s, t,−A2

B

)
which is an open part of the plane z = −A2

B . Thus, we have Case (1) of Theorem

3.2.

Case (2): g′′ = 0. Then, the function g(t) is a linear function, i.e., g(t) = at+ b, a, b ∈ R.

Then the surface given in (2.13) can be parametrized as in (3.29).

The converse follows from a direct computation.

Figure 2. A type I TF-minimal surfaces parametrized by (3.29).

Now, we would like to do the calculations for the second type TF-surfaces.
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3.2. Type II TF-surfaces with zero curvature. Let M2 be an admissible type II TF-

surface in G3 given by (2.14). Then, we have

ϕs = ((Bg +A)f ′, 1, 0), (3.31)

ϕt = (g′(Bf +A), 0, 1). (3.32)

Moreover, by substituting these into (2.4) we obtain

N =
1√

f ′2(Bg +A)2 + g′2(Bf +A)2
(0,−f ′(Bg +A),−g′(Bf +A)). (3.33)

Here by ′, we have denoted derivatives with respect to corresponding parameters. Now, by

combining the above with (2.5) and (2.8), respectively, we get

L11 =
f ′′(Bg +A)

W
, L12 =

Bf ′g′

W
, L22 =

g′′(Bf +A)

W
, (3.34)

and

g11 =
(g′)2(Bf +A)2

W 2
, g12 =

f ′g′(Bf +A)(Bg +A)

W 2
, g22 =

(f ′)2(Bg +A)2

W 2
, (3.35)

where W =
√
f ′2(Bg +A)2 + g′2(Bf +A)2. Consequently, (2.6) and (2.7) give

K =
f ′′g′′(Bf +A)(Bg +A)−B2(f ′)2(g′)2

(f ′2(Bg +A)2 + g′2(Bf +A)2)
(3.36)

and

H =
f ′′g′

2
(Bf +A)

2
(Bg +A) + g′′f ′

2
(Bg +A)

2
(Bf +A)− 2Bf ′

2
g′

2
(Bf +A)(Bg +A)

2(f ′2(Bg +A)
2

+ g′2(Bf +A)
2
)3/2

, (3.37)

respectively.

Remark 3.1. By comparing Eq. (3.20) and Eq. (3.36) implies that the Gaussian curvatures

of type I and type II of TF-surfaces in Galilean 3-space seem to be really very similar. Thus

the following classification of type II TF- flat surfaces can be proved as in Theorem 3.1.

Theorem 3.3. Let M2 be a type II TF-surface defined by (2.14) in the Galilean 3-space.

Then, M2 is a flat surface if and only if it belongs to one of the following families:

(1) M2 is a part of an isotropic plane,

(2) M2 is an admissible surface in G3 parametrized by

ϕ(s, t) = (C1g(t) + C2, s, t) , (3.38)

where C1, C2 are non-zero constant or

ϕ(s, t) = (C1f(s) + C2, s, t) (3.39)
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where C1, C2 are non-zero constant.

(3) f and g are given by

f(s) = − 1

B
eB(c1s+c2) +

A

B
, g(t) = − 1

B
eB(c1t+c2) +

A

B
. (3.40)

(4) f and g are given by

f(s) = −A
B

+B
C

C−1

(
(1− C)(c1s+ c2)

) 1
1−C

, g(t) = −A
B

+B
1

C−1

(
(1− 1

C
)(c1t+ c2)

) C
C−1

, (3.41)

where C 6= 1 and c1, c2 are non-zero constant.

Figure 3. A type II TF-flat surfaces parametrized by (3.40) and (3.41), respectively.

Finally, we would like to give the following classification theorem for a type II TF- minimal

surface:

Theorem 3.4. Let M2 be a type II TF-surface defined by (2.14) in the Galilean 3-space.

Then, M2 is a minimal surface if and only if it belongs to one of the following families:

(1) M2 is an open part of plane,

(2) M2 is an admissible surface in G3 parametrized by

ϕ(s, t) = (s, t, C1g(t) + C2) , (3.42)

where C1, C2 are non-zero constant and g is arbitrary function or

ϕ(s, t) = (s, t, C1f(s) + C2) (3.43)

where C1, C2 are non-zero constant and f is arbitrary function.

(3) f and g are given by

f(s) = − 1

B
eB(c1s+c2) +

A

B
, g(t) = − 1

B
eB(c1t+c2) +

A

B
, (3.44)
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(4) f and g are given by either

(a)

f(s) = −A
B

+B
C

1−C

(
(1− C)(c1s+ c2)

) 1
1−C

, g(t) = −A
B

+B
2−C
C−1

(
(C − 1)(c1t+ c2)

) 1
C−1

, (3.45)

or

(b)

f(s) = −A
B

+B
2−C
C−1

(
(C − 1)(c1s+ c2)

) 1
C−1

, g(t) = −A
B

+B
C

1−C

(
(1− C)(c1t+ c2)

) 1
1−C

, (3.46)

where c1, c2 are non-zero constant and C 6= 1.

Proof. Let M2 be a type II TF-minimal surface. Thus, from (3.37), we have

f ′′g′
2
(Bf +A)

2
(Bg +A) + g′′f ′

2
(Bg +A)

2
(Bf +A)− 2Bf ′

2
g′

2
(Bf +A)(Bg +A) = 0. (3.47)

Let us consider on the following possibilities:

Case (1): f ′ = 0 and g′ = 0. Then, the equation (3.26) is trivially satisfied. By considering

these assumptions in (2.14), respectively, we obtain M2 is an open part of plane. Thus, we

have Case (1) of Theorem 3.4.

Case (2): Either f ′ = 0 or g′ = 0. First, assume that f ′ = 0, i.e., f be constant. In case,

the equation (3.30) is trivially satisfied. But, in case g is a arbitrary smooth function. Thus,

we have (3.42) in Case (2) of Theorem 3.4. Similarly, by considering the assumption of g as

g′ = 0, we can get (3.43) in Case (2) of Theorem 3.4.

Case (3): Let f ′′ = 0 or g′′ = 0, but not both. First, assume that f ′′ = 0 and g′′ 6= 0.

Hence, by considering this assumption in (3.47) yields

g′′(Bg +A)2 − 2Bg′
2
(Bg +A) = 0, (3.48)

from which we have two possibilities; g = −A
B or

g′′(Bg +A)− 2Bg′
2

= 0

is valid. But the first statement contradicts with the hypothesis. Hence, we will only deal

with the second statement, whose solution is g(t) = − 1

B2(c1t+ c2)
− A

B
where c1 6= 0. Thus,

the surface is covered by in Case (4a) in Theorem 3.4 taking C = 0.

Second, let g′′ = 0. Thus, the surface is covered in exactly the same way as in the previous

case, as in Case (4b) in Theorem 3.4.
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Case (3): f ′, g′ and both f ′′ and g′′ be non-zero. Then, the equation (3.47) can be

rewritten as

f ′′(A+Bf)

B(f ′)2
+
g′′(A+Bg)

B(g′)2
= 2. (3.49)

Now, we are going to consider the following cases seperately:

Case (3a):
f ′′(A+Bf)

B(f ′)2
= 1 and

g′′(A+Bg)

B(g′)2
= 1. From there, we solve these equations

to find (3.44) in Case (3) Theorem 3.4.

Case (3b): Let
f ′′(A+Bf)

B(f ′)2
= C 6= 1. From (3.49), one gets

g′′(A+Bg)

B(g′)2
= 2 − C. By

solving these ODEs, we obtain the functions f, g given in (3.45).

Case (3c): Let
g′′(A+Bg)

B(g′)2
= C 6= 1. Similarly, one gets

f ′′(A+Bf)

B(f ′)2
= 2−C. Thus, we

obtain the functions f, g given in (3.46).

Conversely, a direct computation yields that the Gaussian curvature of each of surfaces

given in Theorem 3.4 vanishes identically.

Figure 4. A type II TF-minimal surfaces parametrized by (3.44).

Figure 5. A type II TF-minimal surfaces parametrized by (3.45) and (3.46).
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Abstract. In this paper, Sheffer stroke BG-algebra is defined and its features are investi-

gated. It is indicated that the axioms of a Sheffer stroke BG-algebra are independent. It

is stated the connection between a Sheffer stroke BG-algebra and a BG-algebra by defining

a unary operation on a Sheffer stroke BG-algebra. After describing a subalgebra and a

normal subset of a Sheffer stroke BG-algebra, the relationship of these structures is shown.
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1. Introduction

Y. Imai and K. Iséki presented a novel algebraic structure named BCK algebra in 1966.

Today, many authors study BCK algebras and this algebra is applied to many branches of

mathematics, such as group theory, functional analysis, probability theory, topology, fuzzy set

theory, ect. K. Iséki introduced the new idea which is called BCI algebra in 1980 [4]. BCK/

BCI algebra is a significant class of logical algebras and is researched by many researchers.

Moreover, the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

Neggers and Kim developed a new notion called a B-algebras [8]. B-algebras is connected

several classes of algebras of interest such as BCK/BCI-algebras. In addition, BG-algebras

which is a generalization of B-algebras was presented by C. B. Kim and H. S. Kim [5].
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An algebraic structure BG-algebra was constructed on a non-empty set X with a binary

operation ∗ and a constant 0 satisfying some axioms. In 2004, S. S. Ahn and H. D. Lee

discussed BG-algebra and some of its properties such as fuzzy subalgebras of BG-algebras

[1]. R. Muthuraj et al worked on anti Q-fuzzy BG-ideals in BG-algebra in 2010 [7] and D.

K. Basnet investigated on fuzzy ideals of BG-algebras in 2011 [2].

The Sheffer stroke operation, which was first introduced by H. M. Sheffer [13], engages

many scientists’ attention, because any Boolean function or axiom can be expressed by

means of this operation [6]. It reducts axiom systems of many algebraic structures. So,

many researchers want to use this operation on their studies. For example, interval Sheffer

stroke basic algebras [9], relation between Sheffer stroke operation and Hilbert algebras [10],

filters of strong Sheffer stroke non-associative MV-algebras [11], (Fuzzy) filters of Sheffer

stroke BL-algebras [12] and Sheffer operation in ortholattices [3] are given as some research

on Sheffer stroke operation in recent years.

After giving basic definitions and notions about a Sheffer stroke and a BG-algebra, it is

defined a Sheffer stroke BG-algebra. By presenting fundamental notions about this algebraic

structure, it is proved that the axiom system of a Sheffer stroke BG-algebra is independent.

Sheffer stroke B-algebra is defined and it is indicated that the axioms of a Sheffer stroke B-

algebra are independent. The relationship between a Sheffer stroke BG-algebra and a Sheffer

stroke B-algebra is indicated. It is shown that the connection between a Sheffer stroke BG-

algebra and a BG-algebra and Cartesian product of two Sheffer stroke BG-algebras is a

Sheffer stroke BG-algebra. A subalgebra and a normal subset of a Sheffer stroke BG-algebra

is defined and the relationship between this structures is demonstrated. Finally, it is shown

that the Sheffer stroke BG-algebra is a group-derived under one condition.

2. Preliminaries

In this part, we give the basic definitions and notions about a Sheffer stroke and a BG-

algebra.

Definition 2.1. [3] Let A = 〈A, |〉 be a groupoid. The operation | is said to be Sheffer stroke

if it satisfies the following conditions:

(S1) a1|a2 = a2|a1,

(S2) (a1|a1)|(a1|a2) = a1,

(S3) a1|((a2|a3)|(a2|a3)) = ((a1|a2)|(a1|a2))|a3,

(S4) (a1|((a1|a1)|(a2|a2)))|(a1|((a1|a1)|(a2|a2))) = a1.
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Definition 2.2. [5] A BG-algebra is a non-empty set A with a constant 0 and a binary

operation ∗ satisfying the following axioms:

(BG.1) a1 ∗ a1 = 0,

(BG.2) a1 ∗ 0 = a1,

(BG.3) (a1 ∗ a2) ∗ (0 ∗ a2) = a1,

for all a1, a2 ∈ A.

A BG-algebra is called bounded if it has the greatest element.

Lemma 2.1. [5] In a BG-algebra A, the following properties hold for all a1, a2, a3 ∈ A:

(i) a1 ∗ a2 = a3 ∗ a2 implies a1 = a3,

(ii) 0 ∗ (0 ∗ a1) = a1,

(iii) If a1 ∗ a2 = 0, then a1 = a2,

(iv) If 0 ∗ a1 = 0 ∗ a2, then a1 = a2,

(v) (a1 ∗ (0 ∗ a1)) ∗ a1 = a1.

Definition 2.3. [5] A nonempty subset S of a BG-algebra A is called a BG-subalgebra if

a1 ∗ a2 ∈ S, for all a1, a2 ∈ S.

Definition 2.4. [8] Let A be a BG-algebra. A nonempty subset N of A is said to be normal

if (a1 ∗ x) ∗ (a2 ∗ y) ∈ N for any a1 ∗ a2, x ∗ y ∈ N .

Definition 2.5. [8] A B-algebra is a non-empty set A with a constant 0 and a binary oper-

ation ∗ satisfying the following axioms:

(i) a1 ∗ a1 = 0,

(ii) a1 ∗ 0 = a1,

(iii) (a1 ∗ a2) ∗ a3 = a1 ∗ (a3 ∗ (0 ∗ a2)),

for all a1, a2, a3 ∈ A.

3. Sheffer stroke BG-Algebras

In this part, we define a Sheffer Stroke BG-algebra and give some properties.

Definition 3.1. A Sheffer stroke BG-algebra is an algebra (A, |, 0) of type (2, 0) such that 0

is the constant in A and the following axioms are satisfied:

(sBG.1) (a1|(a1|a1)|(a1|(a1|a1) = 0 ,

(sBG.2) (0|(a2|a2))|(a1|(a2|a2))|(a1|(a2|a2)) = a1|a1,

for all a1, a2 ∈ A.
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Let A be a Sheffer stroke BG-algebra, unless otherwise is indicated.

Lemma 3.1. The axioms (sBG.1) and (sBG.2) are independent.

Proof.

(1) Independence of (sBG.1):

We construct an example for this axiom which is false while (sBG.2) is true. Let ({0, 1}, |1)

be the groupoid defined as follows:

|1 0 1

0 1 1

1 0 0

Then |1 satisfies (sBG.2) but not (sBG.1) when a1 = 1.

(2) Independence of (sBG.2):

Let ({0, 1}, |2) be the groupoid defined as follows:

|2 0 1

0 1 1

1 1 0

Then |2 satisfies (sBG.1) but not (sBG.2) when a1 = 1 and a2 = 1.

Lemma 3.2. Let A be a Sheffer stroke BG-algebra. Then the following features hold for all

a1, a2, a3 ∈ A:

(1) (0|0)|(a1|a1) = a1,

(2) (a1|(0|0))|(a1|(0|0)) = a1,

(3) (a1|(a2|a2))|(a1|(a2|a2)) = (a3|(a2|a2))|(a3|(a2|a2)) implies a1 = a3,

(4) (0|(0|(a1|a1))) = a1|a1,

(5) If (a1|(a2|a2))|(a1|(a2|a2)) = 0 then a1 = a2,

(6) If (0|(a1|a1)) = (0|(a2|a2)) then a1 = a2,

(7) (((a1|(0|(a1|a1)))|(a1|(0|(a1|a1))))|(a1|a1)) = a1|a1,

(8) (a1|(a1|a1))|(a1|a1) = a1.

Proof.
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(1) By using (sBG.1), (S1) and (S2), we obtain

(0|0)|(a1|a1) = (((a1|(a1|a1))|(a1|(a1|a1)))|((a1|(a1|a1))|(a1|(a1|a1))))|(a1|a1)

= (a1|(a1|a1))|(a1|a1)

= (a1|a1)|(a1|(a1|a1))

= a1.

(2) By using (S1), (S2) and (1), we have

(a1|(0|0))|(a1|(0|0)) = (((a1|(a1)|(a1|a1))|(0|0))|((a1|(a1)|(a1|a1))|(0|0)))

= ((0|0)|((a1|a1)|(a1|a1)))|((0|0)|((a1|a1)|(a1|a1)))

= (a1|a1)|(a1|a1)

= a1.

(3) Let (a1|(a2|a2))|(a1|(a2|a2)) = (a3|(a2|a2))|(a3|(a2|a2)). By using (sBG.1), we get

a1|a1 = (0|(a2|a2))|((a1|(a2|a2))|(a1|a2|a2))

= (0|(a2|a2))|((a3|(a2|a2))|(a3|a2|a2))

= a3|a3.

By using (S2), we have a1 = (a1|a1)|(a1|a1) = (a3|a3)|(a3|a3) = a3.

(4) In (sBG.2), we substitute [a2 := a1] and by using (sBG.1) and (S1), we obtain

a1|a1 = (0|(a1|a1))|((a1|(a1|a1))|(a1|(a1|a1)))

= (0|(a1|a1))|0

= 0|(0|(a1|a1)).

(5) By using (sBG.1) and (3), we get (a1|(a2|a2))|(a1|(a2|a2)) = 0 = (a2|(a2|a2))

|(a2|(a2|a2)). Then a1 = a2.
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(6) In (sBG.2) we substitute [a2 := a1] and by using (sBG.1), we obtain

a1|a1 = (0|(a1|a1))|(a1|(a1|a1))|(a1|(a1|a1))

= (0|(a1|a1))|0

= (0|(a2|a2))|0

= (0|(a2|a2))|(a2|(a2|a2))|(a2|(a2|a2))

= a2|a2.

Thus, a1 = (a1|a1)|(a1|a1) = (a2|a2)|(a2|a2) = a2 from (S2).

(7) In (sBG.2) we substitute [a2 := (0|(a1|a1))|(0|(a1|a1))] and by using (S1), (S2) and (4),

we get

a1|a1 = (((a1|(0|(a1|a1)))|(a1|(0|(a1|a1))))|(0|(0|(a1|a1)))

= (((a1|(0|(a1|a1)))|(a1|(0|(a1|a1))))|(a1|a1).

(8) Substituting [a2 := (a1|a1)] in (S2), we obtain

(a1|a1)|(a1|(a1|a1)) = a1.

By using (S1), we get (a1|(a1|a1))|(a1|a1) = a1.

Definition 3.2. A Sheffer stroke B-algebra is an algebra (A, |, 0) of type (2, 0), where A is

a non-empty set, 0 is the constant in A and | is Sheffer stroke on A, such that the following

identities are satisfied for all a1, a2, a3 ∈ A:

(sB.1) (a1|(a1|a1))|(a1|(a1|a1)) = 0,

(sB.2) ((a1|(a2|a2))|(a1|(a2|a2)))|(a3|a3) = (a1|(a3|(0|(a2|a2)))).

Example 3.1. Consider (A, |, 0) with the following Hasse diagram, where A = {0, x, y, 1}:

The binary operation | on A has Cayley table as follow:
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| 0 x y 1

0 1 1 1 1

x 1 y 1 y

y 1 1 x x

1 1 y x 0

Then this structure is a Sheffer stroke B-algebra.

Lemma 3.3. The axioms (sB.1) and (sB.2) are independent.

Proof.

(1) Independence of (sB.1):

We construct an example for this axiom which is false while (sB.2) is true. Let ({0, 1}, |3)

be the groupoid defined as follows:

|3 0 1

0 1 1

1 0 0

Then |3 satisfies (sB.2) but not (sB.1) when a1 = 1.

(2) Independence of (sB.2):

Let ({0, 1}, |4) be the groupoid defined as follows:

|4 0 1

0 1 1

1 1 0

Then |4 satisfies (sB.1) but not (sB.2) when a1 = 1 , a2 = 1 and a3 = 0.

Theorem 3.1. Every Sheffer stroke B-algebra is a Sheffer stroke BG-algebra.

Proof. Since the axioms (sB.1) and (sBG.1) are the same, we show only (sBG.2).

By using (S1), (S2), (sB.2) and Lemma 3.2 (2), we have

(0|(a2|a2))|(a1|(a2|a2))|(a1|(a2|a2)) = ((a1|(a2|a2))|(a1|(a2|a2)))|((0|(a2|a2))|(0|(a2|a2))|

(0|(a2|a2))|(0|(a2|a2)))

= (a1|((((0|(a2|a2))|(0|(a2|a2))))|(0|(a2|a2))))

= (a1|((0|(a2|a2))|((0|(a2|a2))|(0|(a2|a2)))))

= (a1|(0|0))

= a1|a1.
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Theorem 3.2. Let (A, |, 0) be a Sheffer stroke BG-algebra. If we define

a1 ∗ a2 := (a1|(a2|a2))|(a1|a2|a2),

then (A, ∗, 0) is a BG-algebra.

Proof. By using (S1), (S2), (sBG.1), (sBG.2), Lemma 3.2 (2), we have:

(BG.1) : a1 ∗ a1 = (a1|(a1|a1))|(a1|(a1|a1)) = 0.

(BG.2): a1 ∗ 0 = (a1|(0|0))|(a1|(0|0)) = a1.

(BG.3):

(a1 ∗ a2) ∗ (0 ∗ a2) = ((a1|(a2|a2))|(a1|(a2|a2)))|((0|(a2|a2))|(0|(a2|a2))|(0|(a2|a2))|

(0|(a2|a2)))|((a1|(a2|a2))|(a1|(a2|a2)))|((0|(a2|a2))|(0|(a2|a2))|

(0|(a2|a2))|(0|(a2|a2)))

= (((a1|(a2|a2))|(a1|(a2|a2)))|(0|(a2|a2)))|(((a1|(a2|a2))|(a1|(a2|a2)))

|(0|(a2|a2)))

= (0|(a2|a2))|(a1|(a2|a2))|(a1|(a2|a2))|(0|(a2|a2))|(a1|(a2|a2))|(a1

|(a2|a2))

= (a1|a1)|(a1|a1)

= a1.

Theorem 3.3. Let (A, ∗, 0, 1) be a bounded BG-algebra. If we define

a1|a2 := (a1 ∗ a02)0,

where a01 = a1|a1, then (A, |, 0) is a Sheffer stroke BG-algebra.

Proof. (i) By using (BG.1), we have

(a1|(a1|a1))|(a1|(a1|a1)) = (a1|a01)|(a1|a01)

= (a1 ∗ a1)0|(a1 ∗ a1)0

= ((a1 ∗ a1)0)0

= a1 ∗ a1

= 0.



SHEFFER STROKE BG-ALGEBRAS 35

(ii) By using (BG.2), we obtain

((a1|(a2|a2))|(a1|(a2|a2)))|(0|(a2|a2)) = ((a1 ∗ a2)0|(a1 ∗ a2)0)|(0 ∗ a2)0

= ((a1 ∗ a2)0)0|(0 ∗ a2)0

= (a1 ∗ a2)|(0 ∗ a2)0

= ((a1 ∗ a2) ∗ (0 ∗ a2))0

= (a1)
0

= a1|a1.

Theorem 3.4. Let (A, |A, 0A) and (B, |B, 0B) be Sheffer stroke BG-algebras. Then, (A ×

B, |A×B, 0A×B) is a Sheffer stroke BG-algebra, where the operation |A×B is defined by

(a1, b1)|A×B(a2, b2) = (a1|Aa2, b1|Bb2)

and 0A×B = (0A, 0B).

Definition 3.3. A non-empty subset S of a Sheffer stroke BG-algebra A is called a Sheffer

stroke BG-subalgebra of A if (a1|(a2|a2))|(a1|(a2|a2)) ∈ S for all a1, a2 ∈ S.

Theorem 3.5. Let (A, |, 0) be a Sheffer stroke BG-algebra and ∅ 6= S ⊆ A. Then the

following are equivalent:

(a) S is a subalgebra of A,

(b) (a1|(0|(a2|a2)))|(a1|(0|(a2|a2))) ∈ S , (0|(a2|a2))|(0|(a2|a2)) ∈ S for any a1, a2 ∈ S.

Proof. (a)⇒ (b): Since S 6= ∅, there exists an element a1 ∈ S and 0 = (a1|(a1|a1))|

(a1|(a1|a1)) ∈ S. Since S is closed under |, (0|(a2|a2))|(0|(a2|a2)) ∈ S and thus (a1|((0|(a2|

a2))|(0|(a2|a2))|(0|(a2|a2))|(0|(a2|a2)))|(a1|((0|(a2|a2))|(0|(a2|a2))|(0|(a2|a2))|(0|(a2|a2))) ∈ S.

From (S2), we get (a1|(0|(a2|a2))|(a1|(0|(a2|a2)) ∈ S.

(b)⇒ (a): By using Lemma 3.2 (4), (a1|(a2|a2))|(a1|(a2|a2)) = (a1|((0|(0|(a2|a2)))|(0|(0|(a2|

a2)))|(0|(0|(a2|a2)))|(0|(0|(a2|a2)))))|(a1|((0|(0|(a2|a2)))|(0|(0|(a2|a2)))|(0|(0|(a2|a2)))|(0|(0|

(a2|a2))))), (a1|(a2|a2))|(a1|(a2|a2)) ∈ S for any a1, a2 ∈ S.

Definition 3.4. Let A be a Sheffer stroke BG-algebra. A non-empty subset N of A is said

to be normal subset of A if

(((a1|(x|x))|(a1|(x|x)))|(a2|(y|y)))|(((a1|(x|x))|(a1|(x|x)))|(a2|(y|y))) ∈ N,

for any (a1|(a2|a2))|(a1|(a2|a2)), (x|(y|y))|(x|(y|y)) ∈ N .
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Theorem 3.6. Every normal subset N of a Sheffer stroke BG-algebra A is a Sheffer stroke

subalgebra of A.

Proof. If a1, a2 ∈ N then (a1|(0|0))|(a1|(0|0)), (a2|(0|0))|(a2|(0|0)) ∈ N . Since N is

normal , then (a1|(a2|a2))|(a1|(a2|a2)) = ((a1|(a2|a2))|(a1|(a2|a2)))|(0|(0|0))|((a1|(a2|a2))|

(a1|(a2|a2)))|(0|(0|0)) ∈ N . Therefore, N is a Sheffer stroke subalgebra.

Lemma 3.4. Let N be a Sheffer stroke normal subalgebra of a Sheffer stroke BG-algebra A

and let a1, a2 ∈ N . If (a1|(a2|a2))|(a1|(a2|a2)) ∈ N then (a2|(a1|a1))|(a2|(a1|a1)) ∈ N .

Proof. Let (a1|(a2|a2))|(a1|(a2|a2)) ∈ N . Since (a2|(a2|a2))|(a2|(a2|a2)) = 0 ∈ N and

N is normal, (a2|(a1|a1))|(a2|(a1|a1)) = (a2|(a1|a1))|(a2|(a1|a1))|((a2|(a2|a2))|(a2|(a2|a2))|(a2

|(a2|a2))|(a2|(a2|a2)))|(a2|(a1|a1))|(a2|(a1|a1))|((a2|(a2|a2))|(a2|(a2|a2))|(a2|(a2|a2))|(a2|(a2

|a2))) ∈ N .

Theorem 3.7. Let (A, |, 0) be a Sheffer stroke BG-algebra with the identity

((a1|(a2|a2))|(a1|(a2|a2)))|(a3|a3) = a1|(0|(((0|(a2|a2))|(0|(a2|a2)))|(a3|a3))),

for all a1, a2, a3 ∈ A. Then (A, |, 0) is group-derived.

Proof. Define a binary operation ”o” on A by

a1 o a2 = (a1|(0|(a2|a2)))|(a1|(0|(a2|a2))).

Then by using (S2), (sBG.1), Lemma 3.2 (2) and (4), we get

a1 o 0 = (a1|(0|(0|0)))|(a1|(0|(0|0)))

= (a1|((0|(0|0))|(0|(0|0))|(0|(0|0))|(0|(0|0))))|(a1|((0|(0|0))|(0|(0|0))|(0|(0|0))

|(0|(0|0))))

= (a1|(0|0))|(a1|(0|0))

= a1

and

0 o a1 = (0|(0|(a1|a1)))|(0|(0|(a1|a1)))

= (a1|a1)|(a1|a1)

= a1.
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Then 0 acts like an identity element on A. Since

a1 o (0|(a1|a1))|(0|(a1|a1)) = (a1|(0|((0|(a1|a1))|(0|(a1|a1))|(0|(a1|a1))|(0|(a1|a1)))))

|(a1|(0|((0|(a1|a1))|(0|(a1|a1))|(0|(a1|a1))|(0|(a1|a1)))))

= (a1|(0|(0|a1|a1)))|(a1|(0|(0|a1|a1)))

= (a1|((0|(0|a1|a1))|(0|(0|a1|a1))|(0|(0|a1|a1))|(0|(0|a1|a1))))

|(a1|((0|(0|a1|a1))|(0|(0|a1|a1))|(0|(0|a1|a1))|(0|(0|a1|a1))))

= (a1|(a1|a1))|(a1|(a1|a1))

= 0

and

((0|(a1|a1))|(0|(a1|a1)) o a1 = ((0|(a1|a1))|(0|(a1|a1)))|(0|(a1|a1))|((0|(a1|a1))|

(0|(a1|a1)))|(0|(a1|a1))

= 0,

we obtain that (0|(a1|a1))|(0|(a1|a1)) behaves like a multiplicative inverse for a1 with respect

to the operation ”o”. We claim that (A; o) is a semi-group. Indeed,

a1 o (a2 o a3) = (a1|(0|(a2|(0|(a3|a3)))))|(a1|(0|(a2|(0|(a3|a3)))))

= (a1|(0|((0|(0|(a2|a2)))|(0|(0|(a2|a2))))|(0|(a3|a3))))|(a1|(0|((0|(0|(a2|a2)))

|(0|(0|(a2|a2))))|(0|(a3|a3))))

= (a1|(0|((0|(0|(a2|a2))|(0|(a2|a2))|(0|(a2|a2))|(0|(a2|a2)))|(0|(0|(a2|a2))|

(0|(a2|a2))|(0|(a2|a2))|(0|(a2|a2))))|(0|(a3|a3))))|(a1|(0|((0|(0|(a2|a2))

|(0|(a2|a2))|(0|(a2|a2))|(0|(a2|a2)))|(0|(0|(a2|a2))|(0|(a2|a2))|(0|(a2|a2))

|(0|(a2|a2))))|(0|(a3|a3))))

= ((a1|(0|(a2|a2)))|(a1|(0|(a2|a2))))|(0|(a3|a3))|((a1|(0|(a2|a2)))

|(a1|(0|(a2|a2))))|(0|(a3|a3))

= (a1 o a2) o a3.
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Note that

a1 o (a2)
−1 = (a1|(0|((0|(a2|a2))|(0|(a2|a2))|(0|(a2|a2))|(0|(a2|a2)))))|(a1|(0|((0|(a2|a2))

|(0|(a2|a2))|(0|(a2|a2))|(0|(a2|a2)))))

= (a1|(0|(0|(a2|a2))))|(a1|(0|(0|(a2|a2))))

= (a1|(((0|(0|(a2|a2))))|(0|(0|(a2|a2)))|(0|(0|(a2|a2)))|(0|(0|(a2|a2))))|

(a1|(((0|(0|(a2|a2))))|(0|(0|(a2|a2)))|(0|(0|(a2|a2)))|(0|(0|(a2|a2)))))

= (a1|(a2|a2))|(a1|(a2|a2)).

Hence (A; |, 0) is also a group-derived Sheffer stroke BG-algebra. This completes the proof.

4. Conclusion

In this study, we introduce a Sheffer stroke BG-algebra, Cartesian product, a subalgebra,

a normal subset and their some properties. After giving basic definitions and notions about

Sheffer stroke and a BG-algebra, we describe a Sheffer stroke BG-algebra and a Sheffer stroke

B-algebra and present basic notions about this algebraic structures. We indicate that the

axiom systems of a Sheffer stroke BG-algebra and a Sheffer stroke B-algebra are independent.

We show that a Sheffer stroke BG-algebra is a BG-algebra and that Cartesian product of

two Sheffer stroke BG-algebras is a Sheffer stroke BG-algebra. After defining a subalgebra

and a normal subset, we present the relationship between a subalgebra and a normal subset

on Sheffer stroke BG-algebra. Finally, we show that the Sheffer stroke BG-algebra is a

group-derived under one condition.
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Abstract. In the present paper, we consider and solve the problem of finding parametric

plane curves with the same equi-affine and Frenet curvatures. We then classify the paramet-
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1. Introduction

Affine Differential Geometry, since nineteenth century, has been investigated and devel-

oped by a larger group of geometers led by Pick, Tzitzeica, Berwald, Blaschke among others.

See [13] for this process in detail. This branch of Geometry is based on the study of the

invariant properties of affine n−space Rn under the (equi-)affine transformations.

The theory of curves in Rn has had a great interest from past to present [1, 2, 4, 5, 10, 11,

16, 18, 20, 21, 23, 24]. In this paper, we mainly consider the problem of finding parametric

plane curves with the same equi-affine and Frenet curvatures. For example, a unit circle in
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the Euclidean setting has the same constant equi-affine and Frenet curvatures, i.e. 1. We

find the motivation for this study from [3, equation 28], [17, Theorem 4, Theorem 5], [22,

Remark 6]. Although, in these cited papers, all authors constructed certain relations between

the equi-affine and Frenet curvatures for a 2d curve, as far as we know, to solve our main

problem has been overlooked till now.

In the context of affine curves, another interest has been to find the parametric equations

of the curves with prescribed affine curvatures, see [9, 8, 14, 25]. As a secondary purpose of

this paper, we follow this mainstream and classify parametric plane curves with prescribed

equi-affine curvatures by solving certain vector ordinary differential equations (ODEs).

The framework of this paper can be explained as follows in detail.

Let R2 be the affine plane equipped with a fixed area form |· ·| such that |u v| = u1v2 −

u2v1, for some vectors u = (u1, u2) and v = (v1, v2) . The equi-affine group of R2 is generated

by the action of the special linear group SL(2,R) and the group of translations of R2. An

equi-affine transformation of R2 is given in matrix form

x̄ = Ax + b, (1.1)

where x̄,x,b ∈ R2×1 and A ∈ SL(2,R). Point out that the area of a parallelogram is

preserved by (1.1) and hence it is so-called area-preserving affine transformation [15].

(1.1) turns to a Euclidean transformation of R2 if A ∈ SO(2) [6]. By an equi-affine

(resp. a Euclidean) invariant we mean a property of R2 that remains unchanged under the

equi-affine (resp. Euclidean) group.

Let x = x (σ) = (x (σ) , y (σ)) , σ ∈ I ⊂ R, be a smooth parametric curve in R2. The equi-

affine arc-length parameter σ and curvature κa of x are equi-affine invariants of R2 while

the Euclidean arc-length parameter s and Frenet curvature κf of x are Euclidean invariants.

The Fundamental Theorem of equi-affine (Euclidean) plane curves implies that a plane curve

with constant equi-affine (Frenet) curvature is a quadratic curve (a straight line or a circle)

[15, 19]. An equi-affine plane curve with constant equi-affine curvature is homogeneous, i.e.

the orbit of a point under a 1-parameter group of the transformations given by (1.1). The

converse is true as well [7].

We point out that a unit circle in the Euclidean setting has the same constant equi-

affine and Frenet curvatures (i.e. κa = κf = 1) as well as the same arc-length parameters.

Naturally the following question occurs: is there any plane curve x with κa = κf besides the

unit circle in the Euclidean setting? In the mean while, we state that the plane curve x is
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a unit circle in the Euclidean setting if and only if its equi-affine and Euclidean arc-length

parameters are same (see Lemma 3.1.) We answer to this question (see Theorem 3.2) by

assuming that x has different equi-affine and Euclidean arc-length parameters, because it

turns to a unit circle in the Euclidean setting otherwise.

It is worth to specify that, in centro-affine context, Liu [14, Proposition 4.1] obtained a

characterization for a plane curve in terms of its Frenet curvature that the centro-affine and

Euclidean arc-length parameters are same.

Furthermore, by solving a vector ODE of Euler-Cauchy type [12, p. 69] we obtain the

parametric plane curves with κa (σ) = a (bσ + c)−2 , for some constants a, b, c with b2+c2 6= 0.

When a or b is equal to zero, these reduce to the plane curves with constant equi-affine

curvature and thus our case is more general.

2. Preliminaries

Theorem 2.1. We provide basic differential geometric objects of plane curves from [6, 7, 15,

19].

2.1. Equi-affine plane curves. Let x = x (t) = (x (t) , y (t)) , t ∈ I ⊂ R, be a non-

degenerate smooth parametric curve in R2, namely |ẋ ẍ| 6= 0 for any t, where ẋ = dx
dt and

ẍ = d2x
dt2
. This yields that nowhere x has inflection points. Equi-affine arc-length function σ

is defined by

σ (t) =

∫ t

t0

3
√
|ẋ ẍ|dt. (2.1)

Denote x′ = dx
dσ and x′′ = d2x

dσ2 . It follows

∣∣x′ x′′∣∣ = 1 for all σ, (2.2)

in which the parameter σ is said to be equi-affine arc-length. Taking derivative of (2.2) with

respect to σ yields |x′ x′′′| = 0, which means that x′ and x′′′ are linearly dependent. Then

there exist a function κa of σ such that x′′′ = −κax′. Therefore the following occurs

κa (σ) =
∣∣x′′ x′′′∣∣ , (2.3)

called equi-affine curvature of x. Because κa is given by determinant, it is invariant of equi-

affine transformations of R2. It is also clear that the following vector ODE holds

x′′′ + κax
′ = 0. (2.4)
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The Fundamental Theorem of equi-affine plane curves states that for a given smooth

function κa (σ) , σ ∈ I, there exist a unique equi-affine plane curve x admitting σ as equi-

affine arc-length and κa as equi-affine curvature up to an equi-affine transformation of R2.

In this regard, if κa (σ) is a constant function then the solutions of (2.4) yield that, up to

suitable equi-affine transformations, x is either a parabola (κa = 0) or an ellipse (κa > 0) or

a hyperbola (κa < 0) given in explicit forms y = 1
2x

2 and κax
2 + κ2ay

2 = 1. Point out that x

turns to a unit circle in the Euclidean setting when κa = 1 identically.

2.2. Euclidean plane curves. Let x = x (t) = (x (t) , y (t)) , t ∈ I ⊂ R, be a regular smooth

parametric curve in the Euclidean plane E2, namely ‖ẋ‖ 6= 0 for any t, where ‖·‖ stands for

the Euclidean norm. Euclidean arc-length function s of x is given by

s (t) =

∫ t

t0

‖ẋ‖ dt,

in which ds
dt is strictly positive and the inverse of s exists. Therefore x

(
s−1 (t)

)
is so-called

unit-speed curve, i.e.

∥∥∥∥dx(s−1(t))
dt

∥∥∥∥ = 1, and the parameter s is said to be Euclidean arc-length.

If x = x (s) is a unit-speed curve then its Frenet curvature is given by κf (s) =
∥∥∥d2xds2 ∥∥∥ . In

this sense, there is a smooth function θ of s, called turning angle of x, such that

dx

ds
= (cos θ (s) , sin θ (s)) . (2.5)

Here we easily get κf (s) =
∣∣dθ
ds

∣∣ . Note that dθ
ds is also called the signed Frenet curvature of x.

The Fundamental Theorem of Euclidean plane curves states that for given smooth function

κf (s) , s ∈ I, there exist a unique Euclidean plane curve x admitting s as Euclidean arc-

length and κf as signed Frenet curvature up to a Euclidean transformation of E2. In this

regard, if κf (s) is a constant function then the solutions of (2.5) yield that, up to suitable

Euclidean transformations, x is either a straight line (κf = 0) or a circle (κf 6= 0) with radius

1
κf
.

3. Plane curves with κa = κf

Throughout the section, for a plane curve, the equi-affine arc-length parameter is denoted

by σ, the Euclidean arc-length parameter by s, the equi-affine curvature by κa and the Frenet

curvature by κf .

Lemma 3.1. Let x be a non-degenerate smooth parameterized curve in R2 by the same equi-

affine and Euclidean arc-length parameters. Then, up to a Euclidean transformation, it is

the quadratic curve with κa = 1 parameterized by x (σ) = (cosσ, sinσ) .
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Remark 3.1. In Euclidean setting it is the unit circle and its Frenet curve is also κf = 1.

Proof. Let σ denote both the equi-affine and Euclidean arc-length parameters of x.

It then follows ∥∥x′∥∥ =
∣∣x′ x′′∣∣ = 1, (3.1)

where x′ = dx
dσ and x′′ = d2x

dσ2 . Denoting the curve x as x(σ) = (x (σ) , y (σ)) and using (3.1)

we get (
x′
)2

+
(
y′
)2

= 1 (3.2)

and

x′y′′ − x′′y′ = 1. (3.3)

Differentiating (3.2) with respect to σ we have

x′x′′ + y′y′′ = 0 or x′′ =
−y′y′′

x′
, (3.4)

where x′ 6= 0 due to (3.3). Substituting (3.4) into (3.3) gives

y′′ = x′. (3.5)

By differentiating (3.5) with respect to σ we find

y′ = x+ c, (3.6)

for a constant of integration c. Using (3.5) and (3.6) into (3.4) implies that

x′′ + x = −c. (3.7)

By solving (3.7), we derive

x (σ) = λ1 cosσ + λ2 sinσ − c. (3.8)

It follows from (3.6) and (3.8) that

y (σ) = λ1 sinσ − λ2 cosσ + d,

for a constant of integration d. (3.2) immediately implies

λ21 + λ22 = 1

and therefore the curve x can be parametrically written as

x (σ) = (λ1 cosσ + λ2 sinσ − c, λ1 sinσ − λ2 cosσ + d) .

Up to a Euclidean transformation we complete the proof.
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Next we observe the non-degenerate plane curves whose the equi-affine and Frenet curva-

tures are same. Obviously, this curvature cannot be zero in our case. Remark also that the

equi-affine arc-length of such a curve is related by its Frenet curvature as follows

σ (s) =

∫ s

s0

3

√
κf (t)dt.

Therefore we have the following result.

Theorem 3.1. Let x be a non-degenerate smooth parametric curve in R2 with the same

equi-affine and signed Frenet curvatures κ = κ (σ) . Then, up to suitable equi-affine transfor-

mations, it is either a quadratic curve with κ = 1 (namely a unit circle in Euclidean setting)

or parameterized by

x (σ) =

(∫
cos

(∫
κ

2
3dσ

)
κ
−1
3 dσ,

∫
sin

(∫
κ

2
3dσ

)
κ
−1
3 dσ

)
, (3.9)

where σ is the equi-affine arc-length parameter of x given by one of the following

σ =
1

3

(
1 + κ

−1
3

)√
−1 + 2κ

−1
3 , (3.10)

and

σ = c−1
√
−1 + 2κ

−1
3 + cκ

−2
3 − c

−3
2 ln

∣∣∣∣1 + cκ
−1
3 +
√
c

√
−1 + 2κ

−1
3 + cκ

−2
3

∣∣∣∣ , (3.11)

for some constant c 6= 0.

Remark 3.2. In (3.11) it is not easy to express the curvature function κ in terms of σ,

however (3.10) can be simplified as follows: put y = 1 + κ
−1
3 and then (3.10) turns to the

following algebraic equation of degree 3

2y3 − 3y2 − 9σ2 = 0,

in which the real root is

y =
1

2

[
−1 +

(
−1 + 18σ2 + 6

√
−σ2 + 9σ4

)−1
3

+
(
−1 + 18σ2 + 6

√
−σ2 + 9σ4

) 1
3

]
.

Therefore we deduce

κ (σ) =

[
−3

2
+

1

2

(
−1 + 18σ2 + 6

√
−σ2 + 9σ4

)−1
3

+
1

2

(
−1 + 18σ2 + 6

√
−σ2 + 9σ4

) 1
3

]−3
.

Proof. A plane curve is completely determined by its signed Frenet curvature κ =

κ (s) , namely

x (s) =

(∫
cos

(∫
κds

)
ds,

∫
sin

(∫
κds

)
ds

)
. (3.12)
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Let a derivative with respect to σ be denoted by a dash ′. Differentiating (3.12) three times

with respect to σ gives the following equations

x′ =

(
cos

(∫
κds

)
, sin

(∫
κds

))
s′ (3.13)

x′′ =
(
−κ (s′)2 sin

(∫
κds
)

+ s′′ cos
(∫
κds
)
,

κ (s′)2 cos
(∫
κds
)

+ s′′ sin
(∫
κds
)) (3.14)

and

x′′′ =
(
−
[
κ′ (s′)2 + 3κs′s′′

]
sin
(∫
κds
)

+
[
−κ2 (s′)3 + s′′′

]
cos
(∫
κds
)
,[

−κ2 (s′)3 + s′′′
]

sin
(∫
κds
)

+
[
κ′ (s′)2 + 3κs′s′′

]
cos
(∫
κds
))
.

(3.15)

Substituting (3.13) and (3.15) into (2.4) gives

x′′′ + κx′ =

=
(
−
[
κ′ (s′)2 + 3κs′s′′

]
sin
(∫
κ (s) ds

)
+
[
−κ2 (s′)3 + s′′′ + κs′

]
cos
(∫
κ (s) ds

)
,[

−κ2 (s′)3 + s′′′ + κs′
]

sin
(∫
κ (s) ds

)
−
[
κ′ (s′)2 + 3κs′s′′

]
cos
(∫
κ (s) ds

))
= 0.

(3.16)

By using the linearly independence of Sine and Cosine in (3.16) we find

κ′
(
s′
)2

+ 3κs′s′′ = 0

and

− κ2
(
s′
)3

+ κs′ + s′′′ = 0. (3.17)

On the other hand from (2.3), (3.12) and (3.13) we conclude

κ
(
s′
)3

= 1, (3.18)

which leads to

ds = κ
−1
3 dσ. (3.19)

By (3.12) and (3.19) we have (3.9). Assume now in (3.18) that both κ and s′ are constants.

Put κ = κ0. It follows from (2.5) that x turns to a circle in the Euclidean setting with radius

1
|κ0| . In order for such a curve to have constant equi-affine curvature, x must be a quadratic

curve with κa = 1. Otherwise, namely neither κ nor s′ is constant, it then follows from (3.17)

and (3.18) that

κ
[
κ
−1
3 − 1

]
+
(
κ
−1
3

)′′
= 0. (3.20)

Letting κ = (y + 1)−3 into (3.20) yields

y′′ +
y

(y + 1)3
= 0. (3.21)
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After putting p = y′ and dp
dy = y′′

y′ into (3.21) we deduce

p
dp

dy
+

y

(y + 1)3
= 0. (3.22)

Solving (3.22) gives

p (y) =

√
c+

1 + 2y

(1 + y)2
. (3.23)

Because y = κ
−1
3 − 1, (3.23) follows

dσ =
d
(
κ
−1
3

)
√
c+ 2κ

1
3 − κ

2
3

. (3.24)

By solving (3.24) we obtain (3.10) and (3.11) according to c = 0 or c 6= 0.

4. Plane curves with prescribed equi-affine curvature

As we can see from (2.4), classifying parametric plane curves with prescribed equi-affine

curvature directly reduces to solve vector ODE with variable coefficient. In general, solving

such equations is not easy and one of the well-known ODEs with variable coefficient is of

Euler-Cauchy type. If we put the equi-affine curvature as

κa (σ) = a (bσ + c)−2 , b2 + c2 6= 0, (4.1)

for some constants a, b, c, then (2.4) leads to a vector ODE of Euler-Cauchy type. Moreover,

our choice (4.1) generalizes plane curves with constant equi-affine curvature as a secondary

purpose of this paper because x turns to a parabola if a = 0, an ellipse b = 0 and ac−2 > 0,

and a hyperbola b = 0 and ac−2 < 0.

In this section, we try to classify parametric plane curves whose the equi-affine curvature

is given by (2.4). Since we want to generalize plane curves with constant equi-affine curvature

we may assume that ab 6= 0. Putting p = ab−2, (4.1) turns to κa (σ) = pσ−2 up to a suitable

translation of σ. Therefore we have the following result

Theorem 4.1. Let the interval I do not contain zero and a plane curve x : I → R2 have the

equi-affine curvature κa (σ) = pσ−2, p 6= 0. Then, up to suitable equi-affine transformations,

it has one of the following parametric expressions

(1) if p = −2,

x (σ) =
1

3

(
σ3,− lnσ

)
;
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(2) if p < 1
4 and p 6= −2, p 6= 0,

x (σ) =

(
2

3 +
√

1− 4p
σ

3+
√

1−4p
2 ,

2

1− 4p− 3
√

1− 4p
σ

3−
√
1−4p
2

)
;

(3) if p = 1
4 ,

x (σ) =

(
2

3
σ

3
2 ,

2

9
σ

3
2 (−2 + 3 lnσ)

)
;

(4) if p > 1
4 ,

x (σ) = 2σ
3
2

5+16p

(
3 cos

(√
4p− 1 lnσ

)
+ 2
√

4p− 1 sin
(√

4p− 1 lnσ
))

−2 cos
(√

4p− 1 lnσ
)

+ 3√
4p−1 sin

(√
4p− 1 lnσ

))
.

Proof. By (2.4) we write the following vector ODE

x′′′ +
p

σ2
x′ = 0, p 6= 0, (4.2)

where x′ = dx
dσ , etc. Let x′ = y and x′′′ = y′′, then (4.2) implies to the ODE of Euler-Cauchy

type

σ2y′′ + py = 0, (4.3)

which can be reduced to the vector linear ODE with constant coefficient

ÿ − ẏ + py = 0, (4.4)

where ẏ = dy
du , ÿ = d2y

du2
and σ = eu. The characteristic equation of (4.4) follows

λ2 − λ+ p = 0,

in which the roots are λ1,2 = 1±
√
1−4p
2 . According to the sign of the discriminant 1− 4p, we

have to distinguish three cases:

(1) p < 1
4 . We write the solution of (4.4) as

y (σ) = c1σ
1+
√
1−4p
2 + c2σ

1−
√
1−4p
2 (4.5)

for some constant vectors c1, c2 ∈ R2. We have two cases:

(a) p = −2. Integrating (4.5) gives

x (σ) =
1

3
c1σ

3 + c2 lnσ + c0,

for a constant vector c0 ∈ R2. The fact that |x′ x′′| = 1 for each σ ∈ I implies

|c1 c2| = −1
3 and hence we may set c0 = (0, 0) , c1 = (1, 0) and c2 =

(
0, −13

)
.

This proves the first statement of the theorem.
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(b) p 6= −2. Then integrating (4.5) leads to

x (σ) =
2

3 +
√

1− 4p
c1σ

3+
√
1−4p
2 +

2

3−
√

1− 4p
c2σ

3−
√
1−4p
2 + c0,

for a constant vector c0 ∈ R2. The condition that |x′ x′′| = 1 for each σ ∈ I

gives |c1 c2| = −1√
1−4p and hence we may set c0 = (0, 0) , c1 = (1, 0) and c2 =(

0, −1√
1−4p

)
, which gives the proof of the second statement of the theorem.

(2) p = 1
4 . Then the solution of (4.4) follows

y (σ) = σ
1
2 [c1 + c2 lnσ] , (4.6)

for some constant vectors c1, c2 ∈ R2. Integrating (4.6) yields

x (σ) =
2

3
σ

3
2 c1 +

2

9
σ

3
2 (−2 + 3 lnσ) c2 + c0,

for a constant vector c0 ∈ R2. Because |x′ x′′| = 1 for each σ ∈ I we get |c1 c2| = 1

and may set c0 = (0, 0) , c1 = (1, 0) and c2 = (0, 1) . Therefore we derive the proof of

the third statement of the theorem.

(3) p > 1
4 . (4.4) leads to

y (σ) = σ
1
2

[
cos
(√

4p− 1 lnσ
)
c1 + sin

(√
4p− 1 lnσ

)
c2

]
, (4.7)

for some constant vectors c1, c2 ∈ R2. By integrating (4.7) we conclude

x (σ) = 2σ
3
2

5+16p

{[
3 cos

(√
4p− 1 lnσ

)
+ 2
√

4p− 1 sin
(√

4p− 1 lnσ
)]
c1−[

−2
√

4p− 1 cos
(√

4p− 1 lnσ
)

+ 3 sin
(√

4p− 1 lnσ
)]
c2
}

+ c0,

for a constant vector c0 ∈ R2. Because |x′ x′′| = 1 for each σ ∈ I we have |c1 c2| =

1√
4p−1 and may set c0 = (0, 0) , c1 = (1, 0) and c2 =

(
0, 1√

4p−1

)
. This completes the

proof.

Example 4.1. Let the following plane curves with prescribed equi-affine curvature be param-

eterized by

(1) x (σ) = 1
3

(
σ3,− lnσ

)
, κa (σ) = −2σ−2 for σ ∈

[
1
2 , π
]
,

(2) x (σ) =
(
2
7σ

7
2 , 12σ

−1
2

)
, κa (σ) = −15

4 σ−2 for σ ∈
[
1
2 , 1
]
,

(3) x (σ) =
(
2
3σ

3
2 , 29σ

3
2 (−2 + 3 lnσ)

)
, κa (σ) = 1

4σ
−2 for σ ∈

[
1
2 , π
]
,

(4) x (σ) = 2σ
3
2

13 (3 cos (lnσ) + 2 sin (lnσ) ,−2 cos (lnσ) + 3 sin (lnσ)) , κa (σ) = 1
2σ
−2 for

σ ∈
[
1
2 , π
]
.

These curves can be plotted as below:
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Figure 1. Plane curve with κa (σ) = −2σ−2 for σ ∈
[
1
2 , π
]
.
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Figure 2. Plane curve with κa (σ) = −15
4 σ−2 for σ ∈

[
1
2 , 1
]
.
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Figure 3. Plane curve with κa (σ) = 1
4σ
−2 for σ ∈

[
1
2 , π
]
.
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Figure 4. Plane curve with κa (σ) = 1
2σ
−2 for σ ∈

[
1
2 , π
]
.
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Abstract. In this study, it is made new generalizations by adding a security parameter “n”

to NTRU cryptosystem. These generalizations are analyzed in three categories. The first

category clarifies summative generalization, the second category explains a multiplicative

generalization and the latest category expresses a dimension generalization, and the system

is researched with greater sets and many choosings of parameters. As a result of all these

evidences, it is stated that these generalization outputs creates a new NTRUSIGN.
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1. Introduction

In 1996, NTRU was first introduced by J. Hoffstein, J. Pipher ve J. Silverman in Crypto’

96 [5]. Then NTRU’s developers contributed to NTRU which is denoted as a ring-based

and a public key encryption method by making parameter optimization [4]. In 2003, they

introduced NTRUSIGN [9], i. e., a digital signature version of NTRU. In the same year, they

with another team made a presentation which analyzed description errors of NTRU [21]. J.

H. Silverman published a technical report about invertible polynomials in a ring in 2003 [13].

In 2005, J. H. Silverman and W. Whyte published a technical report which analyzed error

probabilities in NTRU decryption [22]. Also, the founding team which published an article
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on effects increasing security level of parameter choosing [11] has published related reports

in the website www.ntru.com.

NTRU is quite resistant to quantum computers based attacks as well as its speed. The

basic reason of protecting this resistant bases on finding a lattice vector with the least length

and powerfulness of problems of finding a lattice point closest to private key into a high

dimensional lattice [20]. Unlike the other public key cryptosystems, the sheltering structure

of the NTRU cryptosystems against these quantum based attacks moves it more interesting

and developing position day by day.

Some examples of quitely full-scale non-destructive attacks to the NTRU cryptosystem

were originally made by Coppersmith et al. in 1997 [1]. Then new parameters which does

away with effects of this attack were presented by Hoffstein et al. in 2003 [8].

As an another example of attack [14], it has increased importance up till today by present-

ing to more powerful, current and new parameters and solutions to the NTRU cryptosystem

organized an attack of splitting the difference [15].

On behalf of detailed readings, it can be seen to [16, 17, 24] for different types of attacks

types, and on the contrary, it can be seen to [12, 19, 3] for proposed new parameters and

new system.

2. Motivation and Method

Hoffstein et al. introduced the first NTRU based digital signature in 2001 [18]. Then they

gave a verification method for the NTRU cryptosystem in the same year [6]. The basic aim

of these studies which present a digital signature and a verification method is to guarantee

which there is no leakage into the system.

Even decoding a cryptological message falls short to state that you are an approved user

of the system. Hence, solving a verification code or a reposted different text in the same way

can co-opt you. It is clear in this age which the development of mobile payment methods and

all business and government works are solved on the network that the discipline of digital

signature is open for improvement. In this sense, the basic motivation of this study studies

proposed in [7] and [23], and also the articles in [2, 25, 10] can be helpful on behalf of extra

readings.
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3. Aim and Scope

This study aims primarily to generalize the NTRU cryptosystem. This study which can

be summarize as sending the sum, product or enhancing dimension of composed encoded

texts by hiding a message with multi public keys and error polynomials purposes specially

to avoid an attack on the plain text. It is obtained that the message is divided into parts

with this method and also can be sent partially by showing that several two message can be

sent in the generalization of enhancing dimension simultaneously.

Besides, this article explains the conditions that all these generalization offers can be used

as a digital signature. If a new encoded text composed in the form of generalizations is sent

just after previously partial encoded texts, the recipient is interpreted as a correct system

user since s/he reads and obtains the message, and it can transform to a digital signature.

The most important output of this study is to enlarge still the NTRU cryptosystem against

the developing quantum computers attacks and render to sheltering case.

4. NTRU Parameters

These are parameters using in the encryption and decryption operations of NTRU and in

the key generation processes:

� N : it is determines a maximum degree of polynomials being used. N is chosen as a

prime so that the process is preserved against attacks, and it is chosen big enough so

that the process is preserved from lattice attacks.

� q : it is a large module and it is chosen as a positive integer. Its values differ relatedly

what we aim in the process.

� p : it is a small module and generally a positive integer. It is rarely chosen as a

polynomial with small coefficients.

The parameters N, q and p can be differently chosen according to the preferred security level.

The case (p, q) = 1 is always preserved so that the ideal (p, q) is equal to the whole ring.

� Lf , Lg : sets of private key, sets in which it is chosen polynomials to be kept confi-

dential chosen for encryption.

� Lm : it is a plain text set. it is stated a set of unencrypted and codable polynomials.

� Lr : it is a set of error polynomials. It is stated a set of arbitrarily chosen error

polynomials with small coefficients in the phase of encryption.
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� center : it is a centralization method. An algorithm guaranteeing which mod q

reductions works in perfect truth in the phase of decryption.

It can be seen [5] for a perscrutation of the NTRU parameter which is introduced above in

general for now and can be given its values in the next section.

5. Algebraic background of NTRU

5.1. Definitions and notation. The encryption operations of NTRU is performed in a

quotient ring R = Z[x]/(xN − 1). N is a positive integer and it is generally chosen as a

prime. If f(x) is a polynomial in R, then fk denotes a coefficient of xk for every k ∈ [0, N−1]

and f(x) denotes a value of f in x for x ∈ C. A convolution product h = f ? g is given by

hk =
∑

i+j≡k mod N fi · gi where f and g are two polynomials in R. When NTRU was first

introduced, it was chosen p and q as a power of 3 and 2, respectively. The subset Lm :

consisted of polynomials with the coefficients {−1, 0, 1} called ternary polynomials. The

private keys f ∈ Lf was usually chosen in the form 1 + p · F . The studies shows that it can

be chosen p as a polynomial and parameters can be varied.

5.2. Key generation.

1. f ∈ Lf and g ∈ Lg is arbitrarily chosen such that f is invertible in mod p and mod q.

2. Fq = f−1 mod q and Fp = f−1 mod p.

3. A private key is (p, Fp).

4. A public key is H = p · g ? Fq mod q.

It is noted that g cannot be used in the phase of decryption. Thus, it cannot be given as a

private key. Since H ? f = p · g mod q, H ? f = 0 mod p which cannot be used when mod p

is substituted.

5.3. Encryption. If the encryption is represented in an algorithmic language;

Input: a message m ∈ Lm and a public key H.

Output: a cipher message e ∈ Υ (m)

1. Chose r ∈ Lr arbitrarily.

2. Return e = r ? H +m mod q.

The set Υ (m) denotes plain texts m which can be encrypted.
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5.4. Decryption. If a phase of decryption is represented as algorithmic, an algorithm D

acts e as below:

Input: a cipher message e ∈ Υ (m) and a private key (p, Fp).

Output: a plain text D(e) = m ∈ Lm.

1. Calculate a mod q = e ? fmodq.

2. Have a polynomial amodq with integer coefficients from a = p · r ? g + f ? m ∈ R by

performing centralization operation.

3. m mod p = a ? Fp mod p.

4. a plain text m = Ψ mod p.

It is noted that Ψ is the mapping Ψ : m 7−→ m mod p. That is, it performs Ψ : Lm −→

Lm mod p. It is important choosing of a convenient parameter in order to work decryption

operation impeccably, i.e., D(e) = m.

6. Choosing Parameters of the New System

The proposed generalized system has used some parameters literally. That is, the choos-

ings of the prime number p and q, the number N , the polynomials f , g, r etc. is the same

as in the classical NTRU system. The only difference is that different polynomials f , g and

r can be chosen for different public keys generation.

7. Using Notations in the New System

The same representations can be used under the same conditions and the same choosings

by holding to all classical NTRU notations. It is only useful to introduce three notations

f∗(n), f
∗
(n,j) and f−1

(n). f
∗
(n) consists of a convolution product of n chosen all secret keys where

f∗(n) = f1 ? f2 ? ... ? fn. f∗(n,j) = f1 ? f2 ? ... ? fj−1 ? fj+1 ? ... ? fn consists of a convolution

product of all except the j. secret key. Let f−1
(n) denote an inverse of product of n unitary

secret keys f on mod p.

8. How does the summative generalization system work?

This generalized system pre-encrypts differently a message by choosing n different public

keys and n different error polynomials. The sum of these composed pre-encrypted texts is

sent as a recent encrypted message. The number n is relatively prime p and q, respectively.

However, there exist two different cases where the number n is greater and less than the
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numbers p and q being modules. Thus, it leads to add a new parameter in the old classical

system NTRU since it works as a security parameter of this system. Now, we show how the

system works in the case n < p, n < q and (n, p) = 1, (n, q) = 1. We consider initially

this system in the classical NTRU rings as Zp[x]/(xN − 1) and Zq[x]/(xN − 1). Then it is

reconsidered by taking a field instead of a ring.

Lemma 8.1. A message polynomial m is encrypted n times by choosings of a public key

hi = f−1
iq ? gi and an error polynomial ri, 1 ≤ i ≤ n according to the classical method of the

NTRU cryptosystem and then the plain text m can be achieved in the case which the sum of

composed encrypted texts ei 1 ≤ i ≤ n is sent.

Proof. Let the encrypted forms of messages m be written and summed obviously

and one under the other. We have

e1 = ph1 ? r1 +m (mod q)

e2 = ph2 ? r2 +m (mod q)

: :

+ en = phn ? rn +m (mod q)

e1 + e2 + ...+ en = p[(h1 ? r1) + (h2 ? r2) + ...+ (hn ? rn)] + nm (mod q).

(8.1)

Now, we obtain

f∗(n)(e1 + e2 + ...+ en) = p[(f∗(n,1) ? g1 ? r1) + (f∗(n,2) ? g2 ? r2) + ...

+(f∗(n,n) ? gn ? rn)] + f∗(n) ? nm (mod q)
(8.2)

by applying the product of each unitary polynomial fi, 1 ≤ i ≤ n to Equation (8.1). Since

f∗(n) consists of the product of the invertible secret keys f and this product is invertible in

the statement (8.2), both sides of the equation is multiplied by f−1
(n) and then the message nm

should not impressed by these values if we consider the equation in mod p instead of mod q.

So,

e1 + e2 + ...+ en = nm (mod p).

Since an user knows the security parameter n into the system, he knows that taken message

is m or the message nm being its n−fold by the notion in the form

e1 + e2 + ...+ en = m+m+ ...+m︸ ︷︷ ︸ (mod p).

n
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This case goes into the probabilistic cryptology. That is, it is based on the assumption that

an user of the system can exit the intricate situation. Now, let us give a certain decryption

method by means of fields.

Lemma 8.2. Let p and q be prime numbers, and let M and S be two N−order irreducible

polynomials in Fp[x] and Fq[x]. Then the system proposal given in Lemma 8.1 works in the

fields Fp[x]/(M) and Fq[x]/(S) non-probabilistically.

Proof. Let us remind that the polynomials f , g, r and m can be only chosen in

Fp[x]/(M) or Fq[x]/(S) such that all conditions in Lemma 8.1 remain the same. Similarly, let

the polynomial m be encrypted by n different public keys h and n different error polynomials

r, and whole encrypted text be divided by n and be sent. Let the statement (8.1) in Lemma

8.1 be divided by n, and let

a =
e1 + e2 + ...+ en

n

= p.
1

n
[(h1 ? r1) + (h2 ? r2) + ...+ (hn ? rn)] +m (mod q)

be sent as a encrypted text. If the polynomial a is first multiplied by f∗(n) and then f−1
(n), and

the current statement calculate in mod p, the system works non-probabilistically as

e1 + e2 + ...+ en
n

= m (mod p).

Now, we state how the system works in the case q > n > p and (p, n) = 1.

Lemma 8.3. All conditions in Lemma 8.1 remain the same, and the system works with

small probability part in the case q > n > p and (p, n) = 1.

Proof. To avoid writing repetition, we skip the steps of decryption in Lemma 8.1

and consider the last step as follows:

e1 + e2 + ...+ en = nm (mod p). (8.3)

When n < q, we reach to mod p without changing. But, there exist k, l ∈ Z such that

n = kp+ l when n > p. Then Equation (8.3) becomes

e1 + e2 + ...+ en = lm (mod p).

When l < n in the last situation, a probabilistic decryption should be done. That is, taken

message can be only m, lm or nm. Since the user of the system knows parameters n, p, q,

he chooses an appropriate text from the set {m, lm, nm}.
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Proposition 8.1. The system works with the probability 4 since there is a possibility of

multiplying by a as a result of b mod p from n = aq + b in addition to the operations in

Lemma 8.3 in the case n > q > p.

9. Multiplicative Generalization

We clarify a method that a message encrypts n times and then the product of recent

composed encrypted polynomials is sent as an encrypted text. The choosings and operations

of summative generalization told in the first chapter remain the same, and let’s encrypt a

message m in n different forms. Let all pre-encrypted texts m be written and multiplied one

under the other. We specify that it is helpful choosing the prime p large enough so that the

residue classes does not constitute a complex situation.

9.1. How does the system work?

e1 = ph1 ? r1 +m (mod q)

e2 = ph2 ? r2 +m (mod q)

: :

? en = phn ? rn +m (mod q)

e1 ? e2 ? ... ? en = pn(h1 ? h2 ? ... ? hn) ? (r1 ? r2 ? ... ? rn) ? p[H ? R] ? m

+mn (mod q)

(9.4)

where H?R is a short result of the convolution product of hi and ri. In the decryption phase,

a symbolic result is only written since its inverse need not to be calculated and is zeroized

in mod p. If Equation (9.4) is multiplied by f∗(n) and f−1
(n) as in Lemma 8.1, respectively, and

the result is calculated in mod p, then we have an equation

e1 ? e2 ? ... ? en = mn (mod p).

If mn (mod p) is chosen in the form that need not to be the reduction, then

e1 ? e2 ? ... ? en = mn (9.5)

is possible. Equation (9.5) reached in the latest phase proposes us a two probability decryp-

tion:

(1) The message is onlym. That is, m becomes known by means of the security parameter

n in a polynomial mn.

(2) Or the message is already mn.

Now, we give the nonprobability working situation of the system.
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Lemma 9.1. If all conditions and choosings are done as in the previous chapter, we consider

Equation (9.4). The system works non probabilistically in the case that [e1 ? e2 ? ... ? en]n

is sent as a encrypted text by exponentiating n−th power of the polynomial e1 ? e2 ? ... ? en

instead of e1 ? e2 ? ... ? en.

Proof. When the n−th power of the encrypted text is exponentiated in the statement

(9.4) and is sent in the form

[e1 ? e2 ? ... ? en]n,

if all decryption steps are done appropriately then an equation

(e1 ? e2 ? ... ? en)n = mn mod p

consists of instead of the statement (9.5) so that the message becomes directly known in the

form

e1 ? e2 ? ... ? en = m

when p is chosen as a sufficiently large parameter.

10. Coordinate Generalization and Enhancing dimension

When a NTRU cryptographic operation is made in a ring R = Z[x]/(xN − 1), a different

public key h2 can be generated by choosing an error polynomial r2 ∈ R from a generated

public key h1. The first cryptographic operation is made in the form which e1 = h1 ? r1 +

m (mod q) if h1 = pf−1
q ?g for f, g ∈ R. The same message (it can be different) can be hidden

in the form e2 = h2?r2+m by means of an another public key produced by h2 = h1?r1+r2 for

an arbitrarily chosen r2 ∈ R. In the latest case, (h1, h2) is a public key, (e1, e2) is a encrypted

text and (f, g) is a secret key where the choosings of f and g is as in the classical NTRU

operations. The message that wishes sent can be (m,m) or (m1,m2). It is worth noting

that all polynomials are the same degree. If they are not, an appropriate monomial with 0

coefficient must be added. To explain the algebraic structure on which this new proposed

system is constructed, it is clear that a mapping

θ : R = Z[x]/(xN − 1) −→ ZN

defined by

θ(a) = (a0, a1, ..., aN−1)
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is a homeomorphism for a(x) = a0 + a1x+ ...+ aN−1x
N−1 ∈ R. We define a mapping µ by

means of the mapping θ.

µ : R×R −→ ZN × ZN , µ((a, b)) = (θ(a), θ(b))

under the operations (a, b)⊕ (c, d) = (a+ c, b+ d), (a, b)� (c, d) = (a ? c, b ? d) for a, b, c and

d ∈ R, i.e., we define by

µ((a, b)) = ((a0, a1, ..., aN−1), (b0, b1, ..., bN−1)).

It can be seen easily that the operations ⊕ and � are well-defined. µ is a homeomorphism

since

µ((a, b)⊕ (c, d)) = µ((a+ c, b+ d))

= (θ(a+ c), θ(b+ d))

= (θ(a) + θ(c), θ(b) + θ(d))

= (θ(a), θ(b)) + (θ(c), θ(d))

= µ((a, b)) + µ((c, d))

and

µ((a, b)� (c, d)) = µ((a ? c, b ? d))

= (θ(a ? c), θ(b ? d))

= (θ(a) ? θ(c), θ(b) ? θ(d))

= (θ(a), θ(b)) ? (θ(c), θ(d))

= µ((a, b)) ? µ((c, d))

so that it is shown that µ is a homeomorphism. More clearly, it is written by the laws

(f, g)⊕ (f ′, g′) = (f + f ′, g + g′)

(f, g)� (f ′, g′) = (f ? f ′, g ? g′)

in R × R for the operations f, f ′, g, g′ ∈ R. Since the ring R can be embedding into R × R

by f 7→ (1, f), (1, f) ∈ R × R is used for all f ∈ R. Then it is possible that the element

(1, f) is invertible since f ∈ R is invertible. That is, if f ? f ′ ≡ 1 mod p for f ∈ R then

(1, f)� (1, f ′) = (1, 1) so that (1, 1) is a unit element of R×R.

After all these details and explanations, we present a NTRU on this structure. Let f, g, ri ∈

R be determined according to the classical NTRU methodology. Let a message (m1,m2) be

sent for the message polynomials m1,m2 ∈ R. A vector (e1, e2) ∈ R×R ∼= Z2N constituted

by the polynomials e1 and e2 which are determined by the pre-encryptions

e1 = pf−1
q ? g ? r1 +m1 (mod q)
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e2 = ph2 +m2 (mod q)

is sent where h1 = pf−1
q ? g and h2 = ph1 ? r1 + r2 (mod q) are two public keys. (f, f)

and (fp, fp) represent secret keys and (r1, r2) represents error vectors of the new proposed

system where (h1, h2) is a public key and fp is an inverse of f in mod p. Since the arbitrarily

choosings of g generate many secret keys, it is stated that the keys (f, f) and (fp, fp) is only

sufficient for the system.

10.1. How does the system work? The receiver opens the vector (e1, e2) by means of

secret keys (f, f) and (fp, fp) as follow.

(e1, e2)� (f, f) = (e1 ? f, e2 ? f) (mod q)

= (p ? g ? r1 + f ? m1, p
2 ? g ? r1 + pr2 ? f + f ? m2) (mod q)

= (f ? m1, f ? m2) (mod p).

(10.6)

If the statement (10.6) is multiplied by (fp, fp), then (fp, fp)�(e1, e2)�(f, f) = (m1,m2)mod p

and the decryption result becomes directly known the message.

10.2. Advantages of the system.

• The receiver uses two public keys such as h1 and h2. Hence, even if a key is obtained,

the other is not obtained easily.

• A larger message such as (m1,m2) is sent in a lump instead of a message m.

• On the constituted system is on Z2N ∼= ZN×ZN , NTRU is more sheltering according

to the ring ZN ∼= R = Z[x]/(xN − 1).

• If f ∈ R is a private key, then (f, f) ∈ R×R is a private key so that no extra search

operation and time are needed.

10.3. Disadvantage of the system. Although involving multiple operations and producing

multiple secret keys tighten the security, it leads to a regression in time and effort capacity.

11. NTRU Digital Signatures

It is understood that if the messages ei, 1 ≤ i ≤ n are sent to the receiver and are correctly

read by the receiver, then there is not infiltration into the system and this receiver is the

right person in summative generalization method given in the first chapter as follow:

If you decode the codes e1, e2, ..., en, you must also decode the code e1 + e2 + ... + en,

thus you prove that you are a confidential user! If the receiver also decodes this summative

code, then he digitally signs. Similarly, the multiplicative generalization method is also used
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as a digital signature and finally sending related codes (e1, e2) in an upper dimension, i.e.,

working in R×R instead of R can be used as a new digital signature method. e1 and e2 are

sent in this method and it is expected that the receiver decodes finally the text (e1, e2). Its

another decipherment acts as a digital signature. Enlarging dimension can remove to the set

RN = R×R× ...×R︸ ︷︷ ︸
N

easily. Thus, it is understood that the receiver is the right user when the code (e1, e2, ..., en)

is read.

It is shown that the conducted system generalizations can be worked as a digital signature

and a verification method. If a generalization parameter ”n” is chosen as n = p1q1 for

a multiplicative generalization, then the top step of the decryption phase of the system is

reduced to solve the RSA problem. It is shown how the proposed generalization systems are

based on a strong foundation. That is, the reached final phase is

e ≡ mp1q1 (mod q)

when NTRU decryption steps are applied properly.

A digital signature

Dn
NTRUSIGN : m 7−→ (m,

∑
ei), 1 ≤ i ≤ n

is defined by means of a mapping

Di
NTRUEncrypt : (m, ri, hi) 7−→ ei, 1 ≤ i ≤ n

where all of the parameters are chosen as introduced in the classical NTRU cryptosystem,

and a verification of this signature is defined by

Dverification :
∑

ei 7−→ (m,n, n mod q), 1 ≤ i ≤ n

and a new NTRU based digital signature is obtained.

12. Conclusion and Recommendations

The basic output of this study is to make a production of NTRU on more comprehensive

structure. In this sense, the obtained datas enlarged the system and proposed to constitute

the system on large sets for choosings of extra public keys, error polynomials. However,

this proposals supporting security, effectiveness and sheltering necessitate the devices which

contain a larger processor and more comprehensive memory as a result of many operations
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and choosings of key from a larger set. It is obvious that the speed is affected negatively but

effectiveness increases by enhancing an usage area and intended use effectiveness increase

under existing conditions. These proposals which can be used as a new digital signature

method can be affirmed practically. The Cryptoanalysis of a new NTRU generalized system

can be done by trying attacks and analyzing new lattice structures corresponding to all these

generalizations. Since the main sending message which is constituted in the form of a sum

or product of encrypted messages consisting of during the sending of the same message can

mean n messages, it can be developed as a probabilistically encryption method. In addition

to this, sending different messages in the same time according to this method means sending

a huge message in different parts by choosing a larger parameter p so that it is important to

preserve the plain text.
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