
Volume 3
Issue 2

2020



VOLUME 3 ISSUE 2 September 2020
ISSN 2636-7467 https://www.journalmim.com

International Journal of Maps in
Mathematics

Editor-in-Chief

Bayram Sahin
Department of Mathematics, Faculty of Science, Ege University, Izmir, Turkey

journalofmapsinmathematics@gmail.com

mailto:journalofmapsinmathematics@gmail.com
https://www.journalmim.com/


Managing Editor

Arif Gursoy
Department of Mathematics, Faculty of Science, Ege University, Izmir, Turkey 

arif.gursoy@ege.edu.tr

Editorial Board

Syed Ejaz Ahmed
Brock University, Canada

Kamil Rajab Ayda-zade
Azerbaijan National Academy of Sciences, Azerbaijan

Erdal Ekici
Canakkale Onsekiz Mart University, Turkey

Arif Gursoy
Ege University, Turkey

Zulfiqar Habib
COMSATS Institute of Information Technology, Pakistan

Vatan Karakaya
Yildiz Technical University, Turkey

Andrey L. Karchevsky
Sobolev Mathematical Institute, Russia

Selcuk Kutluay
Inonu University, Turkey

Jae Won Lee
Gyeongsang National University, Republic of Korea

Jung Wook Lim
Kyungpook National University, Republic of Korea

Takashi Noiri
Yatsushiro College of Technology, Japan

Aldo Figallo Orellano
Universidad Nacional del Sur, Argentina

Bayram Sahin
Ege University, Turkey

Ali Taghavi
University of Mazandaran, Iran

Adnan Tercan
Hacettepe University, Turkey

Gabriel Eduard Vilcu
Petroleum-Gas University of Ploiesti, Romania

Technical Assistants

Ibrahim Senturk

Department of Mathematics, Faculty of Science, Ege
University, Izmir, Turkey

Deniz Poyraz

Department of Mathematics, Faculty of Science, Ege
University, Izmir, Turkey



International Journal of Maps in Mathematics

Volume (3), Issue (2), (2020), Pages:(68–84)

ISSN: 2636-7467 (Online)

www.journalmim.com

SOME RESULTS AND EXAMPLES OF THE f-BIHARMONIC MAPS ON

WARPED PRODUCT MANIFOLDS

ABDELHAMID BOULAL ID AND SEDDIK OUAKKAS ID ∗

Abstract. In this paper, we present some constructions of f -biharmonic functions on the

warped product. We studied particular cases and we give some examples of f -biharmonic

maps.

1. Introduction

The smooth map φ : (Mm, g) −→ (Nn, h) between two Riemannian manifolds is said to

be harmonic if it is a critical point of the energy functional :

E(φ) =
1

2

∫
M
|dφ|2dvg.

φ is harmonic if it satisfies the Euler-Lagrange equation for the energy functional :

τ(φ) = Trg∇dφ = 0,

τ(φ) is called the tension field of φ. As a generalization, we define the bi-energy functional

of φ :

E2(φ) =
1

2

∫
M
|τ(φ)|2dvg.
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φ is said to be biharmonic if and only if

τ2(φ) = −Trg
(
∇φ
)2
τ(φ)− TrgRN (τ(φ), dφ)dφ = 0.

τ2(φ) is called the bi-tension field of φ.

Let f ∈ C∞ (M) be a positive function, We respectively define the f -energy and the

f -bienergy functional of φ by

Ef (φ) =
1

2

∫
M
f |dφ|2dvg

and

E2,f (φ) =
1

2

∫
M
f |τ(φ)|2dvg.

φ is said to be f -harmonic if and only if

τf (φ) = Trg∇fτ(φ) = 0, (1.1)

and it is said to be f -biharmonic if and only if

τ2,f (φ) = −Trg
(
∇φ
)2
fτ (φ)− TrgRN (fτ (φ) , dφ) dφ = 0. (1.2)

τf (φ) and τ2,f (φ) are called respectively the f -tension and f -bitension field of φ. Contrary

to the fact that any harmonic map is biharmonic, an f -harmonic map is not necessarily

f -biharmonic. By considering (Mm, g), (Nn, h) two Riemannian manifolds and α a positive

function on M , we recall that the warped product of M and N noted by (M ×α N,Gα) is

the Riemannian manifold, where the Riemannian metric Gα is defined by

Gα (X,Y ) = g (dπ (X) , dπ (Y )) + (α ◦ π)2 h (dη (X) , dη (Y )) , (1.3)

for all X = (X1, X2) , Y = (Y1, Y2) ∈ Γ (T (M ×N)), π : M × N −→ M and η : M ×

N −→ N are respectively the first and the second projection. The Levi-Civita connection

on (M ×N,G) and (M ×α N,Gα) are noted respectively by ∇ and ∇̃, the relation between

∇̃ and ∇ is given by

∇̃XY = ∇XY +X1 (lnα) (0, Y2) + Y1 (lnα) (0, X2)− α2h (X2, Y2) (grad lnα, 0) . (1.4)

Similarly, the relation between the curvature tensor fields of (M ×α N,Gα) and (M ×N,G)

is given by

R̃ (X,Y ) = R (X,Y ) + (∇Y1grad lnα+ Y1 (lnα) grad lnα, 0) ∧Gα (0, X2)

− (∇X1grad lnα+X1 (lnα) grad lnα, 0) ∧Gα (0, Y2)

− |grad lnα|2 (0, X2) ∧Gα (0, Y2) ,
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where

(X ∧Gα Y )Z = Gα (Z, Y )X −Gα (Z,X)Y

for all X,Y, Z ∈ Γ (T (M ×N)), where X = (X1, X2) and Y = (Y1, Y2). In [12], The

author studied the f -harmonicity on the doubly warped product manifold in order to con-

struct a non-trivial f -harmonic map, he deals in particular with the case of projection. The

author in [13] describes a new method for constructing f-biharmonic maps, this construc-

tion allowed him to give some examples of f -biharmonic map. In [5], the authors studied

f-harmonic morphisms which are a subclass of f -harmonic maps. In [4], the authors stud-

ied biharmonic maps between warped products, in particular they gave the condition for

the biharmonicity of the inclusion and of the projection. Our objective in this paper is

to present the condition of f -biharmonicity using the warped product of two Riemannian

manifolds. In the first part of this paper, we give the conditions for the f -biharmonicity of

the maps Φ : (Mm ×α Nn, Gα) −→ (P p, k) and Ψ : (Mm ×α Nn, Gα) → (P p, k) defined by

Φ (x, y) = φ (x) and Ψ (x, y) = ψ (y) (Theorem 2.1 and Theorem 2.2), with this classification,

we give some special cases and we construct an examples of f -biharmonic map. The study

of the f -biharmonicity of the identity maps Id : (Mm ×α Nn, Gα) −→ (Mm ×Nn, G) and

Id : (Mm ×Nn, G) −→ (Mm ×α Nn, Gα) is presented in the second part of this paper (The-

orem 2.3 and Theorem 2.4), where we give some particular results and we construct some

examples of f -biharmonic maps.

2. The main results

In this section, we consider {ei}1≤i≤m an orthonormal frame on M and {fj}1≤j≤n an or-

thonormal frame on N . Then an orthonormal frame on M×αN is given by
{

(ei, 0) , 1
α (0, fj)

}
.

As a first result, we will study the f -biharmonicity of the map Φ : (Mm ×α Nn, Gα) −→

(P p, k) defined by Φ (x, y) = φ (x). We start by calculating the f -tension field of Φ.

Proposition 2.1. The f−tension field of the map Φ : (Mm ×α Nn, Gα) −→ (P p, k) defined

by Φ (x, y) = φ (x) is given by

τf (Φ) = f (τ (φ) + dφ (grad ln f) + ndφ (grad lnα)) , (2.5)

where φ : (Mm, g) −→ (P p, k) is a smooth map.
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Proof. By definition, we have

τf (Φ) = TrGα∇fdφ̃

= ∇Φ
(ei,0)fdΦ (ei, 0) +

1

α2
∇Φ

(0,fj)
fdΦ (0, fj)

− fdΦ
(
Φ(ei,0) (ei, 0)

)
− f

α2
Φ
(
∇̃(0,fj) (0, fj)

)
.

Using the fact that dΦ (ei, 0) = dφ (ei) and dΦ (0, fj) = 0, a simple calculation gives

∇Φ
(ei,0)fdΦ (ei, 0) = f∇φeidφ (ei) + fdφ (grad ln f)

and

∇Φ
(0,fj)

dΦ (0, fj) = 0.

By using the equation (1.4), we deduce that

∇̃(ei,0) (ei, 0) = (∇eiei, 0)

and

∇̃(0,fj) (0, fj) =
(
0,∇fjfj

)
− nα2 (grad lnα, 0) .

It follows that

τf (Φ) = f∇φeidφ (ei)− fdφ
(
∇Mei ei

)
+ fdφ (grad ln f) + nfdφ (grad lnα)

then, we obtain

τf (Φ) = f (τ (φ) + dφ (grad ln f) + ndφ (grad lnα)) .

Remark 2.1. In the case where φ = IdM , we conclude that the first projection P1 :

(Mm ×α Nn, Gα) −→ (Mm, g) is f -harmonic if and only if the function fαn is constant.

The expression of the f -bitension field of the map Φ is given by the following Theorem.

Theorem 2.1. The f -bitension field of the map Φ : (Mm ×α Nn, Gα) −→ (P p, k) defined by

Φ (x, y) = φ (x) is given by the following formula

τ2,f (Φ) = fτ2 (φ)− nf
(
Trg

(
∇φ
)2
dφ (grad lnα) + TrgR

P (dφ (grad lnα) , dφ) dφ

)
− f

(
2∇φgrad ln fτ (φ) + n∇φgrad lnατ (φ)

)
− nf

(
2∇φgrad ln fdφ (grad lnα) + n∇φgrad lnαdφ (grad lnα)

)
− f

(
|grad ln f |2 + ∆ ln f + nd ln f (grad lnα)

)
τ (φ)

− nf
(
|grad ln f |2 + ∆ ln f + nd ln f (grad lnα)

)
dφ (grad lnα) .

(2.6)
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Proof. By definition of the f -bitension field, we have

τ2,f (Φ) = −TrGα
(
∇Φ
)2
fτ (Φ)− fTrGαRP (τ (Φ) , dΦ) dΦ, (2.7)

where

τ (Φ) = τ (φ) + ndφ (grad lnα) .

Looking at the first term TrGα
(
∇Φ
)2
fτ (Φ), we have

TrGα
(
∇Φ
)2
fτ (Φ) = ∇Φ

(ei,0)∇
Φ
(ei,0)fτ (Φ)−∇Φ

Φ(ei,0)
(ei,0)fτ (Φ)

+
1

α2
∇Φ

(0,fj)
∇Φ

(0,fj)
fτ (Φ)− 1

α2
∇Φ

Φ(0,fj)
(0,fj)

fτ (Φ)
(2.8)

We will give a detailed calculation of this last equation. For the term ∇Φ
(ei,0)∇

Φ
(ei,0)fτ (Φ)−

∇Φ
Φ(ei,0)

(ei,0)fτ (Φ), we have

∇Φ
(ei,0)∇

Φ
(ei,0)fτ (Φ)−∇Φ

Φ(ei,0)
(ei,0)fτ (Φ)

= ∇Φ
(ei,0)∇

Φ
(ei,0)fτ (φ)−∇Φ

∇̃(ei,0)
(ei,0)

fτ (φ)

+ n∇Φ
(ei,0)∇

Φ
(ei,0)fdφ (grad lnα)− n∇Φ

∇̃(ei,0)
(ei,0)

fdφ (grad lnα) .

A simple calculation gives

∇Φ
(ei,0)∇

Φ
(ei,0)fτ (φ)−∇Φ

∇̃(ei,0)
(ei,0)

fτ (φ)

= fTrg

(
∇φ
)2
τ (φ) + 2f∇φgrad ln fτ (φ)

+ f
(
|grad ln f |2 + ∆ ln f

)
τ (φ)

and

∇Φ
(ei,0)∇

Φ
(ei,0)fdφ (grad lnα)−∇Φ

∇̃(ei,0)
(ei,0)

fdφ (grad lnα)

= fTrg

(
∇φ
)2
dφ (grad lnα) + 2f∇φgrad ln fdφ (grad lnα)

+ f
(
|grad ln f |2 + ∆ ln f

)
dφ (grad lnα) .

Then

∇Φ
(ei,0)∇

Φ
(ei,0)fτ

(
φ̃
)
−∇Φ

∇̃(ei,0)
(ei,0)

fτ (Φ)

= fTrg

(
∇φ
)2
τ (φ) + nfTrg

(
∇φ
)2
dφ (grad lnα)

+ 2f∇φgrad ln fτ (φ) + 2nf∇φgrad ln fdφ (grad lnα)

+ f
(
|grad ln f |2 + ∆ ln f

)
τ (φ)

+ nf
(
|grad ln f |2 + ∆ ln f

)
dφ (grad lnα) .

(2.9)
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In the same way, we obtain

∇Φ
(0,fj)
∇Φ

(0,fj)
fτ (Φ) = 0

and

∇Φ
∇̃(0,fj)

(0,fj)
fτ (Φ) = −nα2∇φgrad lnαfτ (φ)− n2α2∇φgrad lnαfdφ (grad lnα)

= −nfα2∇φgrad lnατ (φ)− n2fα2∇φgrad lnαdφ (grad lnα)

− nfα2d ln f (grad lnα) τ (φ)

− n2fα2d ln f (grad lnα) dφ (grad lnα) .

(2.10)

By replacing (2.9) and (2.10) in (2.8), we deduce that

TrGα
(
∇Φ
)2
fτ (Φ) = fTrg

(
∇φ
)2
τ (φ) + nfTrg

(
∇φ
)2
dφ (grad lnα)

+ 2f∇φgrad ln fτ (φ) + nf∇φgrad lnατ (φ)

+ 2nf∇φgrad ln fdφ (grad lnα) + n2f∇φgrad lnαdφ (grad lnα)

+ f
(
|grad ln f |2 + ∆ ln f + nd ln f (grad lnα)

)
τ (φ)

+ nf
(
|grad ln f |2 + ∆ ln f + nd ln f (grad lnα)

)
dφ (grad lnα) .

(2.11)

Finally, the calculation of term TrGαR
P (τ (Φ) , dΦ) dΦ is simple, we have

TrGαR
P (τ (Φ) , dΦ) dΦ = RP (τ (Φ) , dΦ (ei, 0)) dΦ (ei, 0)

+
1

α2
RP (τ (Φ) , dΦ (0, fj)) dΦ (0, fj)

= RP (τ (Φ) , dΦ (ei, 0)) dΦ (ei, 0)

= RP (τ (φ) , dφ (ei)) dφ (ei)

+ nRP (dφ (grad lnα) , dφ (ei)) dφ (ei) .

It follows that

TrGαR
P (τ (Φ) , dΦ) dΦ = TrgR

P (τ (φ) , dφ) dφ+ nTrgR
P (dφ (grad lnα) , dφ) dφ. (2.12)
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By substituting (2.11) and (2.12) in (2.7), we arrive at the following formula

τ2,f (Φ) = fτ2 (φ)− nf
(
Trg

(
∇φ
)2
dφ (grad lnα) + TrgR

P (dφ (grad lnα) , dφ) dφ

)
− f

(
2∇φgrad ln fτ (φ) + n∇φgrad lnατ (φ)

)
− nf

(
2∇φgrad ln fdφ (grad lnα) + n∇φgrad lnαdφ (grad lnα)

)
− f

(
|grad ln f |2 + ∆ ln f + nd ln f (grad lnα)

)
τ (φ)

− nf
(
|grad ln f |2 + ∆ ln f + nd ln f (grad lnα)

)
dφ (grad lnα) .

Theorem 2.1 allows us to establish the f -biharmonicity condition of Φ.

Remark 2.2. The map Φ is f -biharmonic if and only if

τ2 (φ)− n
(
Trg

(
∇φ
)2
dφ (grad lnα) + TrgR

P (dφ (grad lnα) , dφ) dφ

)
−
(
|grad ln f |2 + ∆ ln f + nd ln f (grad lnα)

)
τ (φ)−

(
2∇φgrad ln fτ (φ) + n∇φgrad lnατ (φ)

)
− n

(
|grad ln f |2 + ∆ ln f + nd ln f (grad lnα)

)
dφ (grad lnα)

− n
(

2∇φgrad ln fdφ (grad lnα) + n∇φgrad lnαdφ (grad lnα)
)

= 0.

And in the case where φ is harmonic, we obtain

Corollary 2.1. If the map φ : (Mm, g) −→ (P p, k) is harmonic, we deduce that Φ is f -

biharmonic if and only if

Trg

(
∇φ
)2
dφ (grad lnα) + TrgR

P (dφ (grad lnα) , dφ) dφ

+ 2∇φgrad ln fdφ (grad lnα) + n∇φgrad lnαdφ (grad lnα)

+
(
|grad ln f |2 + ∆ ln f + nd ln f (grad lnα)

)
dφ (grad lnα) = 0.

In the particular case where f = α, the map Φ is f -biharmonic if and only if

Trg

(
∇φ
)2
dφ (grad ln f) + TrgR

P (dφ (grad ln f) , dφ) dφ

+
(

(n+ 1) |grad ln f |2 + ∆ ln f
)
dφ (grad ln f)

+ (n+ 2)∇φgrad ln fdφ (grad ln f) = 0.

The first projection corresponds to the case where φ = IdM , its f -biharmonicity is given

by
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Corollary 2.2. The first projection P1 : (Mm ×α Nn, Gα) −→ (Mm, g) defined by P1 (x, y) =

x is f -biharmonic if and only if

grad∆ lnα+
(
|grad ln f |2 + ∆ ln f + nd ln f (grad lnα)

)
grad lnα

+ 2∇φgrad ln fgrad lnα+
n

2
grad

(
|grad lnα|2

)
+ 2Ricci (grad lnα) = 0.

If f = α, the f -biharmonicity condition of the first projection P1 : (Mm ×f Nn, Gf ) −→

(Mm, g) is given by the following equation

grad∆ ln f +
(

(n+ 1) |grad ln f |2 + ∆ ln f
)
grad ln f

+
(n+ 2)

2
grad

(
|grad ln f |2

)
+ 2Ricci (grad ln f) = 0.

Corollary 2.2 allows us to give an example of a f -biharmonic map.

Example 2.1. Let P1 : R∗+ ×α Nn −→ R∗+ the first projection. By Corollary 2.2, P1 is

f -biharmonic if and only if the functions f1 (t) = (ln f (t))′ and α1 (t) = (lnα (t))′ satisfy the

following differential equation

f ′1α1 + f2
1α1 + nf1α

2
1 + α′′1 + nα1α

′
1 + 2f1α

′
1 = 0.

We will look for solutions of type f1 (t) = a
t and α1 (t) = b

t where a, b ∈ R∗, then the first

projection P1 is f -biharmonic if and only if

(a− 1) (a+ nb− 2) = 0.

We distinguish two cases :

(1) If a = 1, P1 is f -biharmonic if and only if f (t) = C1t and α (t) = C2t
b for any

b ∈ R∗, where C1 and C2 are positive constants.

(2) If a = 2− nb, P1 is f -biharmonic if and only if f (t) = C1t
2−nb and α (t) = C2t

b for

any b ∈ R∗, where C1 and C2 are positive constants.

Now we will determine the f -biharmonicity condition of the map Ψ : (Mm ×α Nn, Gα) −→

(P p, k) defined by Ψ (x, y) = ψ (y) where ψ : (Nn, g) −→ (P p, k) is a smooth map.

Theorem 2.2. The f -tension field and the f -bitension field of Ψ are given by

τf (Ψ) =

(
f

α2
◦ π
)
τ (ψ) (2.13)
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and

τ2,f (Ψ) =

(
f

α4
◦ π
)
τ2 (ψ)

−
(
f

α2

(
∆ ln f + |grad ln f |2

)
◦ π
)
τ (ψ)

+

(
f

α2

(
2∆ lnα+ (2n− 4) |grad lnα|2

)
◦ π
)
τ (ψ)

− (n− 4)

(
f

α2
(d ln f (grad lnα)) ◦ π

)
τ (ψ) .

(2.14)

Proof. Let’s start with the calculation of the f -tension field of Ψ, we have

τf (Ψ) = TrGα∇fdΨ

= ∇Ψ
(ei,0)fdΨ (ei, 0)− fdΨ

(
∇̃(ei,0) (ei, 0)

)
+

(
f

α2
◦ π
)
∇Ψ

(0,fj)
dΨ (0, fj)−

(
f

α2
◦ π
)
dΨ
(
∇̃(0,fj) (0, fj)

)
.

By equation (1.4), we deduce that

τf (Ψ) =

(
f

α2
◦ π
)
∇ψfjdψ (fj)−

(
f

α2
◦ π
)
dψ
(
∇fjfj

)
,

then

τf (Ψ) =

(
f

α2
◦ π
)
τ (ψ) .

It follows that Ψ is f -harmonic if and only if ψ is harmonic. Let’s go to the calculation of

τ2,f (Ψ), we have

τ2,f (Ψ) = −TrGα
(
∇Ψ
)2
fτ (Ψ)− TrGαRP (fτ (Ψ) , dΨ) dΨ, (2.15)

where

τ (Ψ) =

(
1

α2
◦ π
)
τ (ψ) .

By definition of TrGα
(
∇Ψ
)2
fτ (Ψ), we have

TrGα
(
∇Ψ
)2
fτ (Ψ) = ∇Ψ

(ei,0)∇
Ψ
(ei,0)fτ (Ψ)−∇Ψ

∇̃(ei,0)
(ei,0)

fτ (Ψ)

+

(
1

α2
◦ π
)
∇Ψ

(0,fj)
∇Ψ

(0,fj)
fτ (Ψ)−

(
1

α2
◦ π
)
∇Ψ
∇̃(0,fj)

(0,fj)
fτ (Ψ) .

The calculation of the terms of this equation gives us

∇Ψ
(ei,0)∇

Ψ
(ei,0)fτ (Ψ)−∇Ψ

∇̃(ei,0)
(ei,0)

fτ (Ψ)

=

(
f

α2

(
∆ ln f + |grad ln f |2 − 2∆ lnα+ 4 |grad lnα|2 − 4d ln f (grad lnα)

)
◦ π
)
τ (ψ) ,

(
1

α2
◦ π
)
∇Ψ

(0,fj)
∇Ψ

(0,fj)
fτ (Ψ) =

((
f

α4

)
◦ π
)
∇ψfj∇

ψ
fj
τ (ψ)
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and(
1

α2
◦ π
)
∇Ψ
∇̃(0,fj)

(0,fj)
fτ (Ψ) =

(
f

α4
◦ π
)
∇ψ∇fj fjτ (ψ)

+ n

(
f

α2

(
2 |grad lnα|2 − d ln f (grad lnα)

)
◦ π
)
τ (ψ) .

Which gives us

TrGα

(
∇ψ̃
)2
fτ
(
ψ̃
)

=

(
f

α4
◦ π
)
Trh∇2τ (ψ)

+

(
f

α2

(
∆ ln f + |grad ln f |2

)
◦ π
)
τ (ψ)

−
(
f

α2

(
2∆ lnα+ (2n− 4) |grad lnα|2

)
◦ π
)
τ (ψ)

+ (n− 4)

(
f

α2
(d ln f (grad lnα)) ◦ π

)
τ (ψ) .

(2.16)

Finally for the first term TrGαR
P (fτ (Ψ) , dΨ) dΨ, it is easy to verify that

TrGαR
P (fτ (Ψ) , dΨ) dΨ =

(
f

α4
◦ π
)
TrhR

P (τ (ψ) , dψ) dψ. (2.17)

If we substitute (2.16) and (2.17) in (2.15), we obtain

τ2,f (Ψ) =

(
f

α4
◦ π
)
τ2 (ψ)

−
(
f

α2

(
∆ ln f + |grad ln f |2

)
◦ π
)
τ (ψ)

+

(
f

α2

(
2∆ lnα+ (2n− 4) |grad lnα|2

)
◦ π
)
τ (ψ)

− (n− 4)

(
f

α2
(d ln f (grad lnα)) ◦ π

)
τ (ψ) .

If the map ψ a biharmonic non-harmonic, we obtain :

Corollary 2.3. If ψ is a biharmonic non-harmonic map, then Ψ is f -biharmonic if and only

if the functions f and α satisfy the following equation

∆ ln f + |grad ln f |2 − 2∆ lnα+ (4− 2n) |grad lnα|2 + (n− 4) d ln f (grad lnα) = 0.

And if f = α, the last equation becomes

∆ ln f + (n− 1) |grad ln f |2 = 0.

We will have two cases
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(1) If n 6= 1, by calculating the Laplacian of the function fn−1, we deduce that the map

Ψ : (Mm ×f Nn, Gf ) −→ (P p, k) is f -biharmonic if and only if the function fn−1 is

harmonic.

(2) If n = 1, Ψ : (Mm ×f Nn, Gf ) −→ (P p, k) is f -biharmonic if and only if the function

ln f is harmonic.

In the same construction context, let’s look at the identity map Id : (Mm ×α Nn, Gα) −→

(Mm ×Nn, G) .

Theorem 2.3. The identity map Id : (Mm ×α Nn, Gα) −→ (Mm ×Nn, G) is f -biharmonic

if and only

grad∆ lnα+ 2∇Mgrad ln fgrad lnα+
n

2
grad

(
|grad lnα|2

)
+
(

∆ ln f + |grad ln f |2 + nd ln f (grad lnα)
)
grad lnα

+ 2RicciM (grad lnα) = 0.

(2.18)

Proof. By definition of the f -tension field of Id, we have

τf (Id) = ∇(ei,0)f (ei, 0)− f
(
∇̃(ei,0) (ei, 0)

)
+

f

α2
∇(0,fj) (0, fj)−

f

α2

(
∇̃(0,fj) (0, fj)

)
.

It is simple to see that

∇(ei,0)f (ei, 0) = ∇(ei,0) (ei, 0) + f (grad ln f, 0) = (∇eiei, 0) + f (grad lnα, 0) ,

∇(ei,0) (ei, 0) = (∇eiei, 0) ,

∇̃(0,fj) (0, fj) =
(
0,∇fjfj

)
,

and

∇̃(0,fj) (0, fj) =
(
0,∇fjfj

)
− nα2 (grad lnα, 0) .

Then

τf (Id) = f (grad ln f, 0) + nf (grad lnα, 0) = f (grad ln (fαn) , 0) .

From the expression of τf (Id), we deduce that Id is f -harmonic if and only if the function

fαn is constant. The biharmonicity condition of the identity map Id is given by the equation

TrGα∇2f (grad lnα, 0) + f2TrGαR
M×N ((grad ln f, 0) , dφ) dφ = 0. (2.19)
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For the first term A TrGα∇2f (grad lnα, 0) of equation (2.19)

TrGα∇2f (grad lnα, 0) = ∇(ei,0)∇(ei,0)f (grad lnα, 0)−∇∇̃(ei,0)
(ei,0)

f (grad lnα, 0)

+
1

α2

(
∇(0,fj)∇(0,fj)f (grad lnα, 0)−∇∇̃(0,fj)

(0,fj)
f (grad lnα, 0)

)
.

(2.20)

The separate calculation of these terms gives us

∇(ei,0)∇(ei,0)f (grad lnα, 0)−∇∇̃(ei,0)
(ei,0)

f (grad lnα, 0)

= f
(
Trg∇2grad lnα, 0

)
+ 2f

(
∇Mgrad ln fgrad lnα, 0

)
+ f

(
∆ ln f + |grad ln f |2

)
(grad lnα, 0) ,

(2.21)

and

∇(0,fj)∇(0,fj)f (grad lnα, 0)−∇∇̃(0,fj)
(0,fj)

f (grad lnα, 0)

= nfα2

(
1

2

(
grad

(
|grad lnα|2

)
, 0
)

+ d ln f (grad lnα) (grad lnα, 0)

)
.

(2.22)

From the equations (2.20), (2.21) and (2.22), we obtain

TrGα∇2f (grad lnα, 0) = f
(
Trg∇2grad lnα, 0

)
+ 2f

(
∇Mgrad ln fgrad lnα, 0

)
+ f

(
∆ ln f + |grad ln f |2 + nd ln f (grad lnα)

)
(grad lnα, 0)

+
n

2
f
(
grad

(
|grad lnα|2

)
, 0
)
.

By using the fact that (see [17])

Trg∇2gradf = grad∆f +Ricci (gradf) ,

we conclude that

TrGα∇2f (grad lnα, 0) = f (grad∆ lnα, 0) + 2f
(
∇Mgrad ln fgrad lnα, 0

)
+ f

(
∆ ln f + |grad ln f |2 + nd ln f (grad lnα)

)
(grad lnα, 0)

+
n

2
f
(
grad

(
|grad lnα|2

)
, 0
)

+ f
(
RicciM (grad lnα) , 0

)
.

(2.23)

Finally, it is clear that

TrGαR ((grad lnα, 0) , dφ) dφ = (Ricci (grad lnα) , 0) . (2.24)
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The equations (2.23) and (2.24) give us

TrGα∇2f (grad lnα, 0) + +fTrGαR
M×N ((grad lnα, 0) , dφ) dφ

= f (grad∆ lnα, 0) + 2f
(
∇Mgrad ln fgrad lnα, 0

)
+ f

(
∆ ln f + |grad ln f |2 + nd ln f (grad lnα)

)
(grad lnα, 0)

+
n

2
f
(
grad

(
|grad lnα|2

)
, 0
)

+ 2f
(
RicciM (grad lnα) , 0

)
.

Then the identity map Id : (Mm ×α Nn, Gα) −→ (Mm ×Nn, G) is f -biharmonic if and only

if

grad∆ lnα+ 2∇Mgrad ln fgrad lnα+
n

2
grad

(
|grad lnα|2

)
+
(

∆ ln f + |grad ln f |2 + nd ln f (grad lnα)
)
grad lnα

+ 2RicciM (grad lnα) = 0.

The following corollary results from the case where f = α.

Corollary 2.4. Id : (M ×f N,Gf ) −→ (M ×N,G) is f -biharmonic if and only if

grad∆ ln f +
n+ 2

2
grad

(
|grad ln f |2

)
+ 2RicciM (grad ln f)

+
(

∆ ln f + (n+ 1) |grad ln f |2
)
grad ln f = 0.

Theorem 2.3 gives us the following example.

Example 2.2. Let Id : Rm \ {0} ×α Nn −→ Rm \ {0} × Nn when we suppose that the

positives functions f and α are radial. Then by Theorem 2.3, we deduce that the identity

map Id is f -biharmonic if and only if the functions f1 (r) = (ln f (r))′ and α1 (r) = (lnα (r))′

are solutions of the following differential equation

f ′1α1 + f2
1α1 + nf1α

2
1 + α′′1 + nα1α

′
1 + 2f1α

′
1 +

m− 1

r
α′1 −

m− 1

r2
α1 = 0.

A method to solve this equation is to look at the solutions of the form f1 (r) = a
r and α1 (r) = b

r

(a, b ∈ R∗), thef -biharmonicity of Id is expressed by the algebraic equation

a2 + (nb− 3) a− (nb+ 2m− 4) = 0.

For this equation, we can distinguish the following cases :

(1) If m = 1, we obtain two solutions a = 1 and a = 2− nb.

• For a = 1, Id is f -biharmonic if and only if f (r) = C1r and α (r) = C2r
b for

any b ∈ R∗, where C1 and C2 are positive constants.
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• For a = 2 − nb, Id is f -biharmonic if and only if f (r) = C1r
2−nb and α (r) =

C2r
b for any b ∈ R∗, where C1 and C2 are positive constants.

(2) For m > 1, the equation a2 + (nb− 3) a− (nb+ 2m− 4) = 0 has two real solutions

a =
3− nb+A

2

and

a =
3− nb−A

2
,

where

A =
√
n2b2 − 2nb+ 8m− 7.

• For a = 3−nb+A
2 , Id is f -biharmonic if and only if f (r) = C1

√
r3−nb+A and

α (r) = C2r
b for any b ∈ R∗, where C1 and C2 are positive constants.

• For a = 3−nb−A
2 , Id is f -biharmonic if and only if f (r) = C1

√
r3−nb−A and

α (r) = C2r
b for any b ∈ R∗, where C1 and C2 are positive constants.

As a last result, we give a theorem analogous to Theorem 2.3 by considering the identity

map Id : (Mm ×Nn, G) −→ (Mm ×α Nn, Gα).

Theorem 2.4. The identity map Id : (Mm ×Nn, G) −→ (Mm ×α Nn, Gα) is biharmonic if

and only if

grad∆ lnα+ 2∇grad ln fgrad lnα+
(

2− n

2
α2
)
grad

(
|grad lnα|2

)
+
(

∆ ln f + |grad ln f |2 + 4d ln f (grad lnα)
)
grad lnα

+
(

2∆ lnα+
(
4− 2nα2

)
|grad lnα|2

)
grad lnα+ 2Ricci (grad lnα) = 0.

Proof. By definition, we have

τf (Id) = f∇̃(ei,0) (ei, 0) + ei (f) (ei, 0)− fdφ (∇eiei, 0)

+ f∇̃(0,fj) (0, fj)− fdφ
(
0,∇fjfj

)
= fdφ (∇eiei, 0) + f (grad ln f, 0)− fdφ (∇eiei, 0)

+ fdφ
(
0,∇fjfj

)
− nα2 (grad lnα, 0)− fdφ

(
0,∇fjfj

)
,

it follows that

τf (Id) = f
(
(grad ln f, 0)− nα2 (grad lnα, 0)

)
.

It is simple to see that in this case Id is f -harmonic if and only if f = Ce
n
2
α2

. The identity

map Id is f -biharmonic if and only if

TrG∇̃2fα2 (grad lnα, 0) + fα2TrGR̃ ((grad lnα, 0) , ·) · = 0. (2.25)
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For the first term TrG∇̃2fα2 (grad lnα, 0), we have

TrG∇̃2fα2 (grad lnα, 0) = ∇̃(ei,0)∇̃(ei,0)fα
2 (grad lnα, 0)

− ∇̃(∇eiei,0)
fα2 (grad lnα, 0)

+ fα2∇̃(0,fj)∇̃(0,fj) (grad lnα, 0)

− fα2∇̃(
0,∇fj fj

) (grad lnα, 0) .

(2.26)

The terms of equation (2.26) are calculated from the same method used in Theorem 2.4, we

find

∇̃(ei,0)∇̃(ei,0)fα
2 (grad lnα, 0)− ∇̃(∇eiei,0)

fα2 (grad lnα, 0)

= fα2 (grad∆ lnα, 0) + 2fα2 (∇grad ln fgrad lnα, 0)

+ fα2
(

∆ ln f + |grad ln f |2
)

(grad lnα, 0)

+ 2fα2
(

∆ lnα+ 2 |grad lnα|2
)

(grad lnα, 0)

+ 4fα2d ln f (grad lnα) (grad lnα, 0)

+ 2fα2
(
grad

(
|grad lnα|2

)
, 0
)

+ fα2 (Ricci (grad lnα) , 0) ,

(2.27)

and

∇̃(0,fj)∇̃(0,fj) (grad lnα, 0)− ∇̃(
0,∇fj fj

) (grad lnα, 0)

= −nα2 |grad lnα|2 (grad lnα, 0) .

(2.28)

If we replace (2.27) and (2.28) in (2.26), we deduce that

TrG∇̃2fα2 (grad lnα, 0) = fα2 (grad∆ lnα, 0) + 2fα2 (∇grad ln fgrad lnα, 0)

+ 2fα2
(
grad

(
|grad lnα|2

)
, 0
)

+ fα2∆ ln f (grad lnα, 0)

+ 2fα2∆ lnα (grad lnα, 0) + fα2 |grad ln f |2 (grad lnα, 0)

+ 4fα2d ln f (grad lnα) (grad lnα, 0)

+ fα2
(
4− nα2

)
|grad lnα|2 (grad lnα, 0)

+ fα2 (Ricci (grad lnα) , 0) .

(2.29)

To calculate TrGR̃ ((grad lnα, 0) , ·) ·, we use the relation between the curvature tensor fields

of Gα and G, we obtain

R̃ ((grad lnα, 0) , (ei, 0)) (ei, 0) = (Ricci (grad lnα) , 0)
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and

R̃ ((grad lnα, 0) , (0, fj)) (0, fj) = −nα2 |grad lnα|2 (grad lnα, 0)−n
2
α2
(
grad

(
|grad lnα|2

)
, 0
)
.

It follows that

TrGR̃ ((grad lnα, 0) , ·) · = R̃ ((grad lnα, 0) , (ei, 0)) (ei, 0)

+ R̃ ((grad lnα, 0) , (0, fj))

= −nα2 |grad lnα|2 (grad lnα, 0)

− n

2
α2
(
grad

(
|grad lnα|2

)
, 0
)

+ (Ricci (grad lnα) , 0) .

(2.30)

By replacing (2.29) and (2.30) in (2.25), we conclude that the identity map Id : (Mm ×Nn, G) −→

(Mm ×α Nn, Gα) is f -biharmonic if and only if

grad∆ lnα+ 2∇grad ln fgrad lnα+
(

2− n

2
α2
)
grad

(
|grad lnα|2

)
+
(

∆ ln f + |grad ln f |2 + 4d ln f (grad lnα)
)
grad lnα

+
(

2∆ lnα+
(
4− 2nα2

)
|grad lnα|2

)
grad lnα+ 2Ricci (grad lnα) = 0.

If f = α, we obtain

Corollary 2.5. The identity map Id : (Mm ×Nn, G) −→ (Mm ×f Nn, Gf ) is f -biharmonic

if and only if

grad∆ ln f +
(

3∆ ln f +
(
9− 2nf2

)
|grad ln f |2

)
grad ln f

+
(

3− n

2
f2
)
grad

(
|grad ln f |2

)
+ 2Ricci (grad ln f) = 0.

As an application of the Theorem 2.4, we give an example of a f -biharmonic map.

Example 2.3. Let Id : R∗+×Nn −→ R∗+×αNn the identity map and let f and α a positive

functions on R∗+. By Theorem 2.4, Id is f -biharmonic if and only

f ′1α1 + f2
1α1 + 4f1α

2
1 + α′′1 + 6α1α

′
1 + 2f1α

′
1 − nα2α1α

′
1 − 2nα2α3

1 + 4α3
1 = 0,

where f1 (t) = (ln f (t))′ and α1 (t) = (lnα (t))′. In solving this equation, we found particular

solutions given by f (t) = C1t and α (t) = C2

√
t, where C1 and C2 are positive constants,

which implies that the identity map Id : R∗+ ×Nn −→ R∗+ ×α Nn is f -biharmonic.
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Abstract. The object of the present paper is to characterize Lorentzian para-Sasakian

manifolds with respect to the semi-symmetric metric connection satisfying certain curvature

conditions.

1. Introduction

In 1989, K. Matsumoto [12] introduced the notion of Lorentzian para-Sasakian manifolds.

Again the same notion was studied by I. Mihai and R. Rosca [13] and obtained many results on

this manifold. Lorentzian para-Sasakian manifolds have also been studied by K. Matsumoto

and I. Mihai [11], U. C. De et al. [2] and many others such as ([14], [16], [18]).

A linear connection ∇̄ in a Riemannian manifold M is said to be a semi-symmetric con-

nection [4] if the torsion tensor T of the connection ∇̄ defined by

T (X,Y ) = ∇̄XY − ∇̄YX − [X,Y ]
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satisfies

T (X,Y ) = η(Y )X − η(X)Y, (1.1)

where η is a 1-form. If moreover, the connection ∇̄ satisfies the condition

(∇̄Xg)(Y,Z) = 0 (1.2)

for all X,Y, Z ∈ χ(M), where χ(M) is the Lie algebra of vector fields of the manifold M ,

then ∇̄ is said to be a semi-symmetric metric connection, otherwise it is said to be a semi-

symmetric non-metric connection. In 1932, H. A. Hayden [7] defined a semi-symmetric metric

connection on a Riemannian manifold and this was further developed by K. Yano [21]. A

semi-symmetric metric connection have been studied by many authors ([1], [5], [6], [17], [20])

in several ways to a different extent.

A relation between the semi-symmetric metric connection ∇̄ and the Levi-Civita connec-

tion ∇ in Lorentzian para-Sasakian manifold M is given by [17, 21]

∇̄XY = ∇XY + η(Y )X − g(X,Y )ξ. (1.3)

The notion of semisymmetric manifold, a proper generalization of locally symmetric man-

ifold, is defined by R(X,Y ) · R = 0, where R(X,Y ) acts on R as a derivation of the tensor

algebra at each point of the manifold for tangent vector fields X, Y . A complete intrinsic

classification of these manifolds was given by Z. I. Szabó in [19]. Also in [9], O. Kowalski clas-

sified 3-dimensional Riemannian spaces satisfying R(X,Y ) ·R = 0. A Riemannian manifold

is said to be Ricci semisymmetric if R(X,Y ) ·S = 0, where S denotes the Ricci tensor of type

(0, 2). A general classification of these manifolds has been worked out by V. A. Mirzoyan

[15].

We define endomorphisms R(X,Y ) and X ∧A Y for an arbitrary vector field Z by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (1.4)

and

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y, (1.5)

respectively, where X,Y, Z ∈ χ(M) and A is the symmetric (0, 2)-tensor, R is the Riemannian

curvature tensor of type (1, 3).

Furthermore, the tensors R ·R and R · S on (M, g) are defined by

(R(X,Y ) ·R)(U, V )W = R(X,Y )R(U, V )W −R(R(X,Y )U, V )W (1.6)

−R(U,R(X,Y )V )W −R(U, V )R(X,Y )W,
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and

(R(X,Y ) · S)(U, V ) = −S(R(X,Y )U, V )− S(U,R(X,Y )V ), (1.7)

respectively.

Recently, D. Kowalczyk [8] studied semi-Riemannian manifolds satisfying Q(Q,R) = 0

and Q(S, g) = 0, where S, R are the Ricci tensor and curvature tensor, respectively. For

detailed study of semisymmetric manifolds we refer the readers to see ([3], [10]).

The paper is organized as follows: Section 2 is concerned with preliminaries. In Section

3, we obtain the expressions of the curvature tensor R̄ and the Ricci tensor S̄ with respect

to the semi-symmetric metric connection. In Section 4, we prove that R · S̄ = 0 if and only

if the manifold is an Einstein manifold with respect to ∇̄. Next in Section 5 (resp., 6), we

prove that if the manifold satisfies the curvature condition S̄ · R = 0 (resp., R · R̄ = 0),

then it is an η−Einstein (resp., Einstein) manifold with respect to ∇̄. Section 7, deals with

the study of Ricci semisymmetric Lorentzian para-Sasakian manifolds and prove that Ricci

semisymmetries with respect to ∇ and ∇̄ are equivalent if the manifold is a generalized

η−Einstein manifold. In Section 8, we prove that if C(ξ,X) · S̄ = 0, then either the scalar

curvature is constant or the manifold is an Einstein manifold with respect to ∇̄. In the

last Section, it is shown that if Q̄ · C = 0 (where C is the concircular curvature tensor with

respect to∇ and Q̄ is the Ricci operator with respect to ∇̄), then either the scalar curvature is

constant or the manifold is a special type of η−Einstein manifold with respect to ∇̄. Finally,

we construct an example of 5-dimensional Lorentzian para-Sasakian manifold.

2. Preliminaries

A differentiable manifold M of dimension n is called a Lorentzian para-Sasakian manifold,

if it admits a (1, 1)-tensor field φ, a contravariant vector field ξ, a 1-form η and a Lorentzian

metric g which satisfy

φ2X = X + η(X)ξ, η(ξ) = −1, (2.1)

g(X, ξ) = η(X), φξ = 0, η(φX) = 0, (2.2)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (2.3)

(∇Xφ)(Y ) = g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ, (2.4)

∇Xξ = φX, (2.5)
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where ∇ denotes the covariant differentiation with respect to the Lorentzian metric g. If we

put

Φ(X,Y ) = g(φX, Y ) (2.6)

for all vector fields X and Y , then Φ(X,Y ) is a symmetric (0, 2) tensor field. Also since the

1-form η is closed in a Lorentzian para-Sasakian manifold, so we have

(∇Xη)(Y ) = Φ(X,Y ), Φ(X, ξ) = 0 (2.7)

for all vector fields X, Y ∈ χ(M).

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in a

Lorentzian para-Sasakian manifold with respect to the Levi-Civita connection satisfy the

following equations [2, 11]:

η(R(X,Y )Z) = g(Y,Z)η(X)− g(X,Z)η(Y ), (2.8)

R(ξ,X)Y = −R(X, ξ)Y = g(X,Y )ξ − η(Y )X, (2.9)

R(X,Y )ξ = η(Y )X − η(X)Y, (2.10)

R(ξ,X)ξ = −R(X, ξ)ξ = X + η(X)ξ, (2.11)

S(X, ξ) = (n− 1)η(X), Qξ = (n− 1)ξ, (2.12)

S(φX, φY ) = S(X,Y ) + (n− 1)η(X)η(Y ) (2.13)

for all X,Y, Z ∈ χ(M), where S and Q are related by g(QX,Y ) = S(X,Y ).

Definition 2.1. A Lorentzian para-Sasakian manifold M is said to be a generalized η-

Einstein manifold if its Ricci tensor S is of the form [23]

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) + cΩ(X,Y ),

where a, b, c are smooth functions on M and Ω(X,Y ) = g(φX, Y ). If c = 0 (resp., b = c = 0),

then the manifold reduces to an η-Einstein (resp., an Einstein) manifold.

Definition 2.2. The concircular curvature tensor C in an n−dimensional Lorentzian para-

Sasakian manifold M is defined by [22]

C(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ] (2.14)

for all X,Y, Z ∈ χ(M), where R is the Riemannian curvature tensor and r is the scalar

curvature of the manifold.



CERTAIN CURVATURE CONDITIONS IN LP -SASAKIAN MANIFOLDS 89

3. Curvature tensor of a Lorentzian para-Sasakian manifold with respect to

the semi-symmetric metric connection

Let M be an n-dimensional Lorentzian para-Sasakian manifold. The curvature tensor R̄

with respect to ∇̄ is defined by

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z. (3.1)

By using (1.2), (1.3), (2.1), (2.2), (2.5) and (2.7) in (3.1), we get

R̄(X,Y )Z = R(X,Y )Z + g(X,φZ)Y − g(Y, φZ)X − g(Y,Z)φX + g(X,Z)φY (3.2)

+(g(Y, Z)η(X)− g(X,Z)η(Y ))ξ + g(Y, Z)X − g(X,Z)Y

+(η(Y )X − η(X)Y )η(Z),

where

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

is the Riemannian curvature tensor with respect to ∇. By contracting (3.2) over X, we

obtain

S̄(Y, Z) = S(Y,Z)− (n− 2)g(Y, φZ) + (n− 2− ψ)g(Y,Z) + (n− 2)η(Y )η(Z), (3.3)

where S̄ and S are the Ricci tensors of the connections ∇̄ and∇, respectively and ψ = traceφ.

The equation (3.3) yields

Q̄Y = QY − (n− 2)φY + (n− 2− ψ)Y + (n− 2)η(Y )ξ, (3.4)

where Q̄ and Q are the Ricci operators of the connections ∇̄ and ∇, respectively.

Contracting again Y and Z in (3.3), it follows that

r̄ = r + (n− 1)(n− 2− 2ψ), (3.5)

where r̄ and r are the scalar curvatures of the connections ∇̄ and ∇, respectively.

Lemma 3.1. Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to

the semi-symmetric metric connection. Then

R̄(X,Y )ξ = η(Y )(X − φX)− η(X)(Y − φY ), (3.6)

R̄(ξ,X)Y = (g(X,Y )− g(X,φY ))ξ − η(Y )(X − φX), (3.7)

R̄(ξ,X)ξ = X − φX + η(X)ξ, (3.8)

S̄(X, ξ) = (n− 1− ψ)η(X), Q̄ξ = (n− 1− ψ)ξ, (3.9)
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S̄(φX, φY ) = S̄(X,Y ) + (n− 1− ψ)η(X)η(Y ). (3.10)

Proof. By taking Z = ξ in (3.2) and using (2.1), (2.2), (2.10), we get (3.6). (3.7) follows

from (2.1), (2.2), (2.9) and (3.6). By taking Y = ξ in (3.7) and using (2.1), (2.2) we obtain

(3.8). From (3.3), (2.1), (2.2) and (2.12) we find (3.9). By replacing Y = φX and Z = φY

in (3.3) and then using (2.1)-(2.3) and (2.13) we get (3.10).

4. Lorentzian para-Sasakian manifolds with respect to the semi-symmetric

metric connection satisfying R(X,Y ) · S̄ = 0

Suppose that a Lorentzian para-Sasakian manifold with respect to the semi-symmetric

metric connection ∇̄ satisfies the condition

R(X,Y ) · S̄ = 0. (4.1)

Then in view of (1.7), it follows that

S̄(R(X,Y )U, V ) + S̄(U,R(X,Y )V ) = 0

which by putting X = ξ and using (2.9) takes the form

g(Y,U)S̄(ξ, V )− η(U)S̄(Y, V ) + g(Y, V )S̄(U, ξ)− η(V )S̄(U, Y ) = 0. (4.2)

By taking U = ξ in (4.2) and using (2.1), (2.2) and (3.9), we obtain

S̄(Y, V ) = (n− 1− ψ)g(Y, V ). (4.3)

From which we have

Q̄V = (n− 1− ψ)V. (4.4)

Conversely, if (4.3) satisfies, then by using (4.4) in the expression (R(X,Y ) · S̄)(U, V ) =

−S̄(R(X,Y )U, V )− S̄(U,R(X,Y )V ) = −g(R(X,Y )U, Q̄V )− g(Q̄U,R(X,Y )V ), we find

(R(X,Y ) · S̄)(U, V ) = −(n− 1− ψ)(g(R(X,Y )U, V ) + g(U,R(X,Y )V )) (4.5)

which by using the fact that g(R(X,Y )U, V ) + g(U,R(X,Y )V )) = 0 reduces to (R(X,Y ) ·

S̄)(U, V ) = 0. Thus we can state the following theorem:

Theorem 4.1. If an n−dimensional Lorentzian para-Sasakian manifold with respect to semi-

symmetric metric connection satisfies the condition R·S̄ = 0, then the manifold is an Einstein

manifold of the form (4.3) and the converse is also true.
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5. Lorentzian para-Sasakian manifolds with respect to the semi-symmetric

metric connection satisfying S̄ ·R = 0

Suppose that a Lorentzian para-Sasakian manifold with respect to the semi-symmetric

metric connection satisfies (S̄(X,Y ) ·R)(U, V )Z = 0. Then we have [8]

(X∧S̄Y )R(U, V )Z +R((X∧S̄Y )U, V )Z +R(U, (X∧S̄Y )V )Z (5.1)

+R(U, V )(X∧S̄Y )Z = 0

for any X,Y, Z, U, V ∈ χ(M). Taking Y = ξ in (5.1), we have

(X∧S̄ξ)R(U, V )Z +R((X∧S̄ξ)U, V )Z +R(U, (X∧S̄ξ)V )Z (5.2)

+R(U, V )(X∧S̄ξ)Z = 0

which in view of (1.5) takes the form

S̄(ξ,R(U, V )Z)X − S̄(X,R(U, V )Z)ξ +R(S̄(ξ, U)X − S̄(X,U)ξ, V )Z (5.3)

+R(U, S̄(ξ, V )X − S̄(X,V )ξ)Z +R(U, V )(S̄(ξ, Z)X − S̄(X,Z)ξ) = 0.

By using (3.9) in (5.3), we find

(n− 1− ψ)[η(R(U, V )Z)X + η(U)R(X,V )Z + η(V )R(U,X)Z + η(Z)R(U, V )X] (5.4)

−S̄(X,R(U, V )Z)ξ − S̄(X,U)R(ξ, V )Z − S̄(X,V )R(U, ξ)Z − S̄(X,Z)R(U, V )ξ = 0.

Now taking inner product of (5.4) with ξ, we get

(n− 1− ψ)[η(R(U, V )Z)η(X) + η(U)η(R(X,V )Z) + η(V )η(R(U,X)Z)

+η(Z)η(R(U, V )X)] + S̄(X,R(U, V )Z)− S̄(X,U)η(R(ξ, V )Z)

−S̄(X,V )η(R(U, ξ)Z)− S̄(X,Z)η(R(U, V )ξ) = 0

which by putting U = Z = ξ and using (3.6)-(3.8) reduces to

(n− 1− ψ)(g(X,V ) + η(X)η(V )) + S̄(X,V + η(V )ξ) = 0

from which it follows that

S̄(X,V ) = −(n− 1− ψ)g(X,V )− 2(n− 1− ψ)η(X)η(V ). (5.5)

Thus we can state the following theorem:
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Theorem 5.1. If an n−dimensional Lorentzian para-Sasakian manifold with respect to the

semi-symmetric metric connection satisfies the condition S̄ · R = 0, then the manifold is an

η−Einstein manifold of the form (5.5).

6. Lorentzian para-Sasakian manifolds with respect to the semi-symmetric

metric connection satisfying R · R̄ = 0

Let M be an n-dimensional Lorentzian para-Sasakian manifold with respect to the semi-

symmetric metric connection satisfies (R(X,Y ) · R̄)(U, V )W = 0 . Then in view of (1.6), it

follows that

R(X,Y )R̄(U, V )W − R̄(R(X,Y )U, V )W − R̄(U,R(X,Y )V )W (6.1)

−R̄(U, V )R(X,Y )W = 0.

By substituting X = U = ξ in (6.1) and using (2.2), (2.9), (2.11) and (3.7), we find

g(V,W )Y − g(V, φW )Y − R̄(Y, V )W − η(V )g(Y, φW )ξ (6.2)

+η(V )η(W )φY − g(Y,W )V + g(Y,W )φV = 0.

Taking inner product of (6.2) with Z, we have

g(V,W )g(Y,Z)− g(V, φW )g(Y,Z)− g(R̄(Y, V )W,Z)− η(V )η(Z)g(Y, φW ) (6.3)

+η(V )η(W )g(φY,Z)− g(Y,W )g(V,Z) + g(Y,W )g(φV,Z) = 0.

Let {e1, e2, e3......., en−1, en = ξ} be a frame of orthonormal basis of the tangent space at

any point of the manifold. If we put V = W = ei in (6.3) and summing up with respect to

i(1 ≤ i ≤ n), then we obtain

S̄(Y,Z) = (n− 1− ψ)g(Y, Z). (6.4)

Thus we can state the following theorem:

Theorem 6.1. If an n−dimensional Lorentzian para-Sasakian manifold with respect to the

semi-symmetric metric connection satisfies the condition R · R̄ = 0, then the manifold is an

Einstein manifold of the form (6.4).
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7. Ricci semisymmetries in Lorentzian para-Sasakian manifolds with respect

to the connections ∇̄ and ∇

Assuming that the manifold is Ricci symmetric with respect to the semi-symmetric metric

connection ∇̄, therefore we have

(R̄(X,Y ) · S̄)(U, V ) = −S̄(R̄(X,Y )U, V )− S̄(U, R̄(X,Y )V ) (7.1)

for all X,Y, U, V ∈ χ(M). In view of (3.2) and (3.3), (7.1) takes the form

(R̄(X,Y ) · S̄)(U, V ) = (R(X,Y ) · S)(U, V )− (n− 2− ψ)[R(X,Y, U, V )

+R(X,Y, V, U)] + (n− 2)[g(R(X,Y )U, φV ) + g(R(X,Y )V, φU)]

−(n− 2)[η(R(X,Y )U)η(V ) + η(R(X,Y )V )η(U)]

−g(X,φU)S̄(Y, V )− g(X,φV )S̄(U, Y ) + g(Y, φU)S̄(X,V )

+g(Y, φV )S̄(X,U) + g(Y,U)S̄(φX, V ) + g(Y, V )S̄(U, φX)

−g(X,U)S̄(φY, V )− g(X,V )S̄(U, φY )− g(Y,U)η(X)S̄(ξ, V )

−g(Y, V )η(X)S̄(U, ξ) + g(X,U)η(Y )S̄(ξ, V ) + g(X,V )η(Y )S̄(ξ, U)

−g(Y,U)S̄(X,V )− g(Y, V )S̄(X,U) + g(X,U)S̄(Y, V )

+g(X,V )S̄(U, Y )− η(Y )η(U)S̄(X,V )− η(Y )η(V )S̄(X,U)

+η(X)η(U)S̄(Y, V ) + η(X)η(V )S̄(Y,U)

which by using (2.8) and the fact that R(X,Y, U, V ) +R(X,Y, V, U) = 0 turns to

(R̄(X,Y ) · S̄)(U, V ) = (R(X,Y ) · S)(U, V ) + (n− 2)[g(R(X,Y )U, φV ) (7.2)

+g(R(X,Y )V, φU)]− (2n− 3− ψ)[g(Y,U)η(X)η(V )− g(X,U)η(Y )η(V )

+g(Y, V )η(X)η(U)− g(X,V )η(Y )η(U)]− g(X,φU)S̄(Y, V )

−g(X,φV )S̄(U, Y ) + g(Y, φU)S̄(X,V ) + g(Y, φV )S̄(X,U)

+g(Y,U)S̄(φX, V ) + g(Y, V )S̄(U, φX)− g(X,U)S̄(φY, V )

−g(X,V )S̄(U, φY )− g(Y, U)S̄(X,V )− g(Y, V )S̄(X,U)

+g(X,U)S̄(Y, V ) + g(X,V )S̄(U, Y )− η(Y )η(U)S̄(X,V )

−η(Y )η(V )S̄(X,U) + η(X)η(U)S̄(Y, V ) + η(X)η(V )S̄(Y, U).

Suppose that (R̄(X,Y ) · S̄)(U, V ) = (R(X,Y ) · S)(U, V ), then from (7.2), it follows that

(n− 2)[g(R(X,Y )U, φV ) + g(R(X,Y )V, φU)]
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−(2n− 3− ψ)[g(Y, U)η(X)η(V )− g(X,U)η(Y )η(V )

+g(Y, V )η(X)η(U)− g(X,V )η(Y )η(U)]− g(X,φU)S̄(Y, V )

−g(X,φV )S̄(U, Y ) + g(Y, φU)S̄(X,V ) + g(Y, φV )S̄(X,U)

+g(Y,U)S̄(φX, V ) + g(Y, V )S̄(U, φX)− g(X,U)S̄(φY, V )

−g(X,V )S̄(U, φY )− g(Y,U)S̄(X,V )− g(Y, V )S̄(X,U)

+g(X,U)S̄(Y, V ) + g(X,V )S̄(U, Y )− η(Y )η(U)S̄(X,V )

−η(Y )η(V )S̄(X,U) + η(X)η(U)S̄(Y, V ) + η(X)η(V )S̄(Y,U) = 0

which by taking X = U = ξ and then using (2.1), (2.2) and (2.8) reduces to

S̄(φY, V ) = (n− 2)g(Y, V ) + (n− 2)η(Y )η(V )− (ψ − 1)g(Y, φV ). (7.3)

Now replacing V by φV in (7.3) and using (2.1), (2.2) and (3.10), we obtain

S̄(Y, V ) = (1− ψ)g(Y, V ) + (n− 2)g(Y, φV )− (n− 2)η(Y )η(V ). (7.4)

Thus we can state the following theorem:

Theorem 7.1. Ricci semisymmetries with respect to ∇̄ and ∇ are equivalent if the manifold

is a generalized η−Einstein manifold with respect to the semi-symmetric metric connection.

8. Lorentzian para-Sasakian manifolds with respect to the semi-symmetric

metric connection satisfying C(ξ,X) · S̄ = 0

We consider that an n-dimensional Lorentzian para-Sasakian manifold with respect to the

semi-symmetric metric connection satisfies C(ξ,X) · S̄ = 0. Then we have

S̄(C(ξ,X)Y,Z) + S̄(Y,C(ξ,X)Z) = 0. (8.1)

From (2.14), we find

C(ξ,X)Y = [1− r

n(n− 1)
](g(X,Y )ξ − η(Y )X). (8.2)

By virtue of (8.2), (8.1) takes the form

[1− r

n(n− 1)
](g(X,Y )S̄(ξ, Z)− η(Y )S̄(X,Z) + g(X,Z)S̄(Y, ξ)− η(Z)S̄(X,Y )) = 0

which by taking Z = ξ and using (2.1), (2.2) and (3.9) gives

[1− r

n(n− 1)
](S̄(X,Y )− (n− 1− ψ)g(X,Y )) = 0. (8.3)
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Thus we have either r = n(n− 1), or

S̄(X,Y ) = (n− 1− ψ)g(X,Y ). (8.4)

Thus we can state the following theorem:

Theorem 8.1. If an n−dimensional Lorentzian para-Sasakian manifold with respect to the

semi-symmetric metric connection satisfies the condition C(ξ,X) · S̄ = 0, then either the

scalar curvature is constant or the manifold is an Einstein manifold of the form (8.4).

9. Lorentzian para-Sasakian manifolds with respect to the semi-symmetric

metric connection satisfying Q̄ · C = 0

In this section we suppose that an n-dimensional Lorentzian para-Sasakian manifold with

respect to the semi-symmetric metric connection satisfies Q̄ · C = 0. Then we have

Q̄(C(X,Y )Z)− C(Q̄X, Y )Z − C(X, Q̄Y )Z − C(X,Y )Q̄Z = 0 (9.1)

for all X,Y, Z ∈ χ(M). In view of (2.14), it follows from (9.1) that

Q̄(R(X,Y )Z)−R(Q̄X, Y )Z −R(X, Q̄Y )Z −R(X,Y )Q̄Z

+
2r

n(n− 1)
(S̄(Y,Z)X − S̄(X,Z)Y ) = 0

which by taking inner product with ξ yields

η(Q̄(R(X,Y )Z))− η(R(Q̄X, Y )Z)− η(R(X, Q̄Y )Z)− η(R(X,Y )Q̄Z) (9.2)

+
2r

n(n− 1)
(S(Y, Z)η(X)− S(X,Z)η(Y )) = 0.

Putting Y = ξ in (9.2), we have

η(Q̄(R(X, ξ)Z))− η(R(Q̄X, ξ)Z)− η(R(X, Q̄ξ)Z)− η(R(X, ξ)Q̄Z) (9.3)

+
2r

n(n− 1)
(S(ξ, Z)η(X)− S(X,Z)η(ξ)) = 0.

From (2.9), we can easily find

η(Q̄(R(X, ξ)Z)) = η(R(X, Q̄ξ)Z) = (n− 1− ψ)(g(X,Z) + η(X)η(Z)), (9.4)

η(R(Q̄X, ξ)Z) = η(R(X, ξ)Q̄Z) = (n− 1− ψ)η(X)η(Z) + S̄(X,Z).

By making use of (2.1), (3.9) and (9.4), (9.3) reduces to

[
r

n(n− 1)
− 1](S̄(X,Z) + (n− 1− ψ)η(X)η(Z)) = 0.
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Thus we have either r = n(n− 1), or

S̄(X,Z) = −(n− 1− ψ)η(X)η(Z). (9.5)

Thus we can state the following theorem:

Theorem 9.1. If an n−dimensional Lorentzian para-Sasakian manifold with respect to the

semi-symmetric metric connection satisfies the condition Q̄ · C = 0, then either the scalar

curvature is constant or the manifold is a special type of η−Einstein manifold of the form

(9.5).

Example. We consider the 5-dimensional manifold M =
{

(x1, x2, x3, x4, x5) ∈ R5
}

, where

(x1, x2, x3, x4, x5) are the standard coordinates in R5. Let e1, e2, e3, e4 and e5 be the vector

fields on M given by

e1 = coshx5
∂

∂x1
+ sinhx5

∂

∂x2
, e2 = sinhx5

∂

∂x1
+ coshx5

∂

∂x2
,

e3 = coshx5
∂

∂x3
+ sinhx5

∂

∂x4
, e4 = sinhx5

∂

∂x3
+ coshx5

∂

∂x4
, e5 =

∂

∂x5
= ξ,

which are linearly independent at each point of M and hence form a basis of TpM . Let g be

the Lorentzian metric on M defined by

g(ei, ei) = 1, for 1 ≤ i ≤ 4 and g(e5, e5) = −1,

g(ei, ej) = 0, for i 6= j, 1 ≤ i ≤ 5 and 1 ≤ j ≤ 5.

Let η be the 1-form defined by η(X) = g(X, e5) = g(X, ξ) for all X ∈ χ(M), and let φ be

the (1, 1)-tensor field defined by

φe1 = −e2, φe2 = −e1, φe3 = −e4, φe4 = −e3, φe5 = 0.

By applying linearity of φ and g, we have

η(ξ) = g(ξ, ξ) = −1, φ2X = X + η(X)ξ and g(φX, φY ) = g(X,Y ) + η(X)η(Y )

for all X,Y ∈ χ(M). Thus for e5 = ξ, the structure (φ, ξ, η, g) defines a Lorentzian almost

paracontact metric structure on M . Then we have

[e1, e2] = [e1, e3] = [e1, e4] = [e2, e3] = [e2, e4] = [e3, e4] = 0,

[e1, e5] = −e2, [e2, e5] = −e1, [e3, e5] = −e4, [e4, e5] = −e3.

The Levi-Civita connection ∇ of the Lorentzian metric g is given by

2g(∇XY,Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]),
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which is known as Koszul’s formula. Using Koszul’s formula, we find

∇e1e1 = 0, ∇e1e2 = −e5, ∇e1e3 = 0, ∇e1e4 = 0, ∇e1e5 = −e2,

∇e2e1 = −e5, ∇e2e2 = 0, ∇e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = −e1,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0, ∇e3e4 = −e5, ∇e3e5 = −e4,

∇e4e1 = 0, ∇e4e2 = 0, ∇e4e3 = −e5, ∇e4e4 = 0, ∇e4e5 = −e3,

∇e5e1 = 0, ∇e5e2 = 0, ∇e5e3 = 0, ∇e5e4 = 0, ∇e5e5 = 0.

Also one can easily verify that

∇Xξ = φX and (∇Xφ)Y = g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ.

Therefore, the manifold is a Lorentzian para-Sasakian manifold. By using (1.3), we find

∇̄e1e1 = −e5, ∇̄e1e2 = −e5, ∇̄e1e3 = 0, ∇̄e1e4 = 0, ∇̄e1e5 = −e1 − e2,

∇̄e2e1 = −e5, ∇̄e2e2 = −e5, ∇̄e2e3 = 0, ∇̄e2e4 = 0, ∇̄e2e5 = −e1 − e2,

∇̄e3e1 = 0, ∇̄e3e2 = 0, ∇̄e3e3 = −e5, ∇̄e3e4 = −e5, ∇̄e3e5 = −e3 − e4,

∇̄e4e1 = 0, ∇̄e4e2 = 0, ∇̄e4e3 = −e5, ∇̄e4e4 = −e5, ∇̄e4e5 = −e3 − e4,

∇̄e5e1 = 0, ∇̄e5e2 = 0, ∇̄e5e3 = 0, ∇̄e5e4 = 0, ∇̄e5e5 = 0.

From the above results, we can easily obtain the components of the curvature tensor as

follows:

R(e1, e2)e1 = e2, R(e1, e2)e2 = −e1, R(e1, e3)e1 = 0, R(e1, e3)e3 = 0,

R(e1, e4)e1 = 0, R(e1, e4)e4 = 0, R(e1, e5)e1 = −e5, R(e1, e5)e5 = −e1,

R(e2, e3)e2 = 0, R(e2, e3)e3 = 0, R(e2, e4)e2 = 0, R(e2, e4)e4 = 0,

R(e2, e5)e2 = −e5, R(e2, e5)e5 = −e2, R(e3, e4)e3 = e4, R(e3, e4)e4 = −e3,

R(e3, e5)e3 = −e5, R(e3, e5)e5 = −e3, R(e4, e5)e4 = −e5, R(e4, e5)e5 = −e4,

and

R̄(e1, e2)e1 = 0, R̄(e1, e2)e2 = 0, R̄(e1, e3)e1 = −e3 − e4, R̄(e1, e3)e3 = e1 + e2,

R̄(e1, e4)e1 = −e3 − e4, R̄(e1, e4)e4 = e1 + e2, R̄(e1, e5)e1 = −e5, R̄(e1, e5)e5 = −e1 − e2,

R̄(e2, e3)e2 = −e3−e4, R̄(e2, e3)e3 = −e1−e2, R̄(e2, e4)e2 = −e3−e4, R̄(e2, e4)e4 = e1 +e2,

R̄(e2, e5)e2 = −e5, R̄(e2, e5)e5 = −e1 − e2, R̄(e3, e4)e3 = 0, R̄(e3, e4)e4 = 0,

R̄(e3, e5)e3 = −e5, R̄(e3, e5)e5 = −e3 − e4, R̄(e4, e5)e4 = −e5, R̄(e4, e5)e5 = −e3 − e4.
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From these curvature tensors, we calculate

S(e1, e1) = S(e2, e2) = S(e3, e3) = S(e4, e4) = 0, S(e5, e5) = −4, (9.6)

S̄(e1, e1) = S̄(e2, e2) = S̄(e3, e3) = S̄(e4, e4) = 3, S̄(e5, e5) = −4. (9.7)

Therefore, from (9.6) and (9.7) we obtain r = 4 and r̄ = 16, respectively. Thus it can be

seen that the equation (3.5) is satisfied, where ψ =
∑5

i=1 εig(φei, ei) = 0.

From (1.1), we calculate the components of torsion tensor as follows:

T (ei, ej) = 0, for 1 ≤ i, j ≤ 5, T (ei, e5) = −ei, for i = 1, 2, 3, 4. (9.8)

From (1.2), it can be easily seen that

(∇̄eig)(ej , ek) = 0, for any 1 ≤ i, j, k ≤ 5. (9.9)

Thus by virtue of (9.8) and (9.9), we say that the linear connection ∇̄ defined by (1.3) on

the manifold M is a semi-symmetric metric connection.

Acknowledgement. The authors are thankful to the referees for their valuable suggestions

towards the improvement of the paper.

References

[1] De, U. C and Biswas, S. C., On a type of semi-symmetric metric connection on a Riemannian manifold,

Publ. Inst. Math. (Beogran) (N. S.), 61(75) (1997), 90-96.

[2] De, U. C., Matsumoto, K. and Shaikh, A. A., On Lorentzian para-Sasakian manifolds, Rendiconti del

Seminario Matematico di Messina, Serie II, 3(1999), 149-158.

[3] Deszcz, R., On pseudosymmetric spaces, Bull. Soc. Belg. Math., Ser A., 44(1992), 1-34.

[4] Friedmann, A. and Schouten, J. A., Uber die Geometric der holbsymmetrischen Ubertragurgen, Math. Z.,

21(1924), 211-233.

[5] Haseeb, A., Khan, M. A. and Siddiqi, M. D., Some more results on an ε-Kenmotsu manifold with a

semi-symmetric metric connection, Acta Math. Univ. Comenian., 85(2016), 9-20.

[6] Haseeb, A. and Prasad, R., Certain curvature conditions in Kenmotsu manifolds with respect to the

semi-symmetric metric connection, Comm. Korean Math. Soc., 32(2017), 1033-1045.

[7] Hayden, H. A., Subspaces of space with torsion, Proc. London Math. Soc., 34(1932), 27-50.

[8] Kowalczyk, D., On some subclass of semisymmetric manifolds, Soochow J. Math., 27(2001), 445-461.

[9] Kowalski, O., An explicit classification of 3-dimensional Riemannian spaces satisfying R(X,Y ) · R = 0,

Czech. Math. J., 46(1996), 427-474.

[10] Malekzadeh, N., Abedi, E. and De, U. C., Pseudosymmetric and Weyl-pseudosymmetric (k, µ)-contact

metric manifolds, Archivum Mathematicum (BRNO), Tomus 52(2016), 1-12.

[11] Matsumoto, K. and Mihai, I., On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor

(N. S.), 47(1988), 189-197.



CERTAIN CURVATURE CONDITIONS IN LP -SASAKIAN MANIFOLDS 99

[12] Matsumoto, K., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. nat. Sci., 12(1989), 151-156.

[13] Mihai, I. and Rosca, R., On Lorentzian P-Sasakian manifolds. Classical Analysis, World Scientific Publi.,

Singapore, (1992), 155-169.

[14] Mihai, I., Shaikh, A. A. and De, U. C., On Lorentzian para-Sasakian manifolds, Korean J. Math. Sci.,

6(1999), 1-13.

[15] Mirzoyan, V. A., Structure theorems on Riemannian Ricci semisymmetic spaces (Russian), Izv. Vyssh.

Uchebn. Zaved. Mat., 6(1992), 80-89.

[16] Prasad, R. and Haseeb, A., On a Lorentzian para-Sasakian manifold with respect to the quarter-

symmetric metric connection, Novi Sad J. Math., 46(2016), 103-116.

[17] Sharfuddin, S. and Husain, S. I., Semi-symmetric metric connexions in almost contact manifolds, Tensor

(N. S.), 30(1976), 133-139.

[18] Singh, R. N. and Pandey, S. K., On a quarter-symmetric metric connection in an LP -Sasakian manifold,

Thai J. Math., 12(2014), 357-371.
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Abstract. In this paper we studied almost contact manifolds with semi-symmetric con-

nection, especially Sasakian manifolds. Curvature, sectional curvature and φ-sectional cur-

vature are calculated by semi-symmetric connection. Furthermore; geometric properties of

integral submanifold of Sasakian manifolds are investigated.

1. Introduction

The idea of a semi symmetric connection on a smooth manifolds was first introduce by

Friedmann and Schouten in 1924, [3]. The Sasakian manifolds were introduced in the 1960’s

by S. Sasaki as an odd-dimensional analogous of Kaehler manifolds. Kaehler manifolds are

a classical object of differential geometry and well studied in literature. Compared to that

Sasakian manifolds have only recently become subject of deeper research in mathematics

and physics. Semi-symmetric connection studied by many authors from 1924 so far. In 1993,

Benjancu and Duggal [2] introduced the concept of (ε)-Sasakian manifolds. Afterwards,

in 2014, Ram Nawal Singh, Shravan Kumar Pandey, Giteshwari Pandey and Kiran Tiwari

examined semi-symmetric connection in an (ε)-Kenmotsu manifold.
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In the present paper, in the first section, Sasakian manifold are examined, then in next

section cosymplectic manifolds are studied using semi symmetric metric connection.

2. Preliminaries

Let M be an odd dimensional smooth manifold with a Riemannian metric g and Rie-

mannian connection ∇. Denote by TM the Lie algebra of vector fields on M . Then M is

said to be an almost contact metric manifold if there exist on M a tensor φ of type (1, 1), a

vector field ξ called structure vector field and η, the dual 1-form of ξ satisfying the following

φ2X = −X + η(X)ξ, g(X, ξ) = η(X) (2.1)

η(ξ) = 1, φ(ξ) = 0, η ◦ φ = 0 (2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.3)

for any X,Y ∈ TM . In this case

g(φX, Y ) = −g(X,φY ). (2.4)

If dη(X,Y ) = g(X,φY ), for every X,Y ∈ TM , then we say that M is a contact metric

manifold. If ξ is a killing vector field with respect to g, the contact metric structure is called

a K-contact structure. It is easy to prove that a contact metric manifold is K-contact if and

only if ∇Xξ = −φX, for any X ∈ TM , where ∇ denotes the Levi-Civita connection on M.

We are thus led to define four tensors N1 , N2 , N3 , N4 by

N (1)(X,Y ) = [φ, φ](X,Y ) + 2dη(X,Y )ξ,

N (2)(X,Y ) = (LφXη)(Y )− (LφY η)(X),

N (3) = (Lξφ)X,

N (4) = (Lξη)X.

An almost contact structure (φ, ξ, η) is normal if and only if these four tensors are equal to

zero. Now we give some useful theorems.

Theorem 2.1. [2] An almost contact metric struture (φ, ξ, η, g) is Sasakian if and only if

(∇Xφ)Y = g(X,Y )ξ − η(Y )X.

A Sasakian manifold is K-contact then ξ is Killing vector field and ∇Xξ = −φX.
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Proposition 2.1. [2] On a Sasakian manifold,

R(X,Y )ξ = η(Y )X − η(X)Y.

Theorem 2.2. [2] A contact metric manifold is K-contact if and only if the sectional cur-

vature of all plane sections containing ξ are equal to 1. Moreover, on a K-contact manifold,

R(X, ξ)ξ = X − η(X)ξ.

Let M be a submanifold of M̃ and TM and T⊥M be the Lie algebras of vector fields

tangential and normal to M̃ , respectively. Suppose ∇̃ is the induced Levi-Civita connection

on M̃ . The Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + h(X,Y ), (2.5)

∇̃XV = −AVX +∇⊥
XV, (2.6)

for all X,Y ∈ TM and V ∈ T⊥M , where ∇⊥ is the connection on the normal bundle T⊥M ,

h is the second fundamental form and AV is the Weingarten map associated with V as

g(AVX,Y ) = g(h(X,Y ), V ), (2.7)

for then using the standard formula namely Koszul formula for the Levi-Civita connection,

g(∇XY,Z) =
1

2
{Xg(Y, Z) + Y g(X,Z)− Zg(X,Y ) (2.8)

+ g([X,Y ], Z) + g([Z,X], Y ) + g([Z, Y ], X)},

for all X,Y ∈ TM .

3. Semi-symmetric metric connections

A linear connection ∇̄ defined on contact metric manifold M is said to be semi-symmetric

connection[3], if its torsion tensor

T̄ (X,Y ) = ∇̄XY − ∇̄YX − [X,Y ]

satisfies

T̄ (X,Y ) = η(Y )X − η(X)Y.

Further, a connection is called a semi-symmetric metric connection[5] if

(∇̄Xg)(Y,Z) = 0.
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The relation between the semi-symmetric metric connection ∇̄ and the Levi-Civita connection

is given by[4]

∇̄XY = ∇XY + η(Y )X − g(X,Y )ξ. (3.9)

Let M be a Sasakian manifold and ∇ be a Levi-Civita connection defined on M. Using 3.9

we obtain

(∇̄Xη)Y = ∇̄Xg(Y, ξ)− η(∇̄XY ) = −η(∇XY )− η(Y )η(X) + g(X,Y ). (3.10)

From the definition immediately we obtain the following useful facts.

1)∇̄XφY = ∇XφY − g(X,φY )ξ,

2)∇̄φXY = ∇φXY + η(Y )φX − g(φX, Y )ξ,

3)∇̄φXφY = ∇φXφY + η(X)η(Y )ξ − g(X,Y )ξ,

4)∇̄φXξ = 0,

5)∇̄ξX = ∇ξX,

for all X,Y ∈ TM .

Lemma 3.1. On Sasakian manifold,

(∇̄φXφ)Y = g(φX, Y )ξ − g(X,Y )ξ − η(Y )φX + η(Y )X.

Proof.

(∇̄φXφ)Y = ∇̄φXφY − φ∇̄φXY = ∇φXφY − g(φX, φY )ξ − φ∇φXY − η(Y )φ2X,

= ∇φXφY − φ∇φXY + η(Y )φX − g(X,Y )ξ,

= g(φX, Y )ξ − g(X,Y )ξ − η(Y )φX + η(Y )X.

The proof is completed.

Let the curvature tensorR̄ given by

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z,

where ∇̄ is semi-symmetric connection. Using 3.9, we obtain routinely

R̄(X,Y )Z = R(X,Y )Z + η(Z)η(Y )X − η(Z)η(X)Y, (3.11)

− g(Y, Z)X + g(X,Z)Y + g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ,

+ g(∇Xξ, Z)Y − g(Y,Z)∇Xξ − g(Z,∇Y ξ)X + g(X,Z)∇Y ξ.
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For Sasakian manifolda the equation 3.9 reduces to

R̄(X,Y )Z = R(X,Y )Z + η(Z)η(Y )X − η(Z)η(X)Y, (3.12)

− g(Y,Z)X + g(X,Z)Y + g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ,

− g(φX,Z)Y + g(Y,Z)φX + g(Z, φY )X − g(X,Z)φY.

To calculate the sectional curvature, first we have

R̄(X,Y, Y,X) = R(X,Y, Y,X) + η(Y )η(Y )g(X,X), (3.13)

− g(Y, Y )g(X,X) + g(X,Y )g(X,Y ) + η(X)η(X)g(Y, Y ).

Assume {X,Y } are orthonormal, then

R̄(X,Y, Y,X) = R(X,Y, Y,X) + η(Y )η(Y ) + η(X)η(X)− 1, (3.14)

therefore

K̄(X,Y ) = K(X,Y ) + η(Y )η(Y ) + η(X)η(X)− 1. (3.15)

For Sasakian manifolds we have R(X,Y )ξ = η(Y )X − η(X)Y , then from 3.9, we obtain

R̄(X,Y )ξ = η(Y )X − η(X)Y − η(X)φY + η(Y )φX.

3.1. Integral submanifolds.

Definition 3.1. A submanifold N of M is an integral submanifold, if η(X) = 0 for every

X ∈ TN . [1]

Lemma 3.2. Let M be a Sasakian manifold with a semi-symmetric metric connection. As-

sume N be an integral submanifold, then

(∇̄Xφ)Y = g(X,Y )ξ,

for any X,Y ∈ TN .

Proof. If N be an integral submanifold, then ξ is normal to N, hence

(∇̄Xφ)Y = ∇̄XφY − φ∇̄XY = ∇XφY − g(X,φY )ξ − φ∇XY + g(Y, ξ)φX = (∇Xφ)Y.

Using theorem 2.1 the proof is trivial.
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For integral submanifolds the equation 3.9 become to

R̄(X,Y )Z = R(X,Y )Z + g(X,Z)Y − g(Y, Z)X − g(X,Z)φY + g(Y, Z)φX, (3.16)

which present the relation between curvature tensors of connections ∇̄ and ∇ in integral

submanifolds of Sasakian manifolds. From 3.16, we get

g(R̄(X,Y )Z, V ) = g(R(X,Y )Z, V ) + g(X,Z)g(Y, V )− g(Y,Z)g(X,V ). (3.17)

SupposeR̄(X,Y )Z = 0, which by virtue of the equation 3.17 yields

g(R(X,Y )Z, V ) = g(Y, Z)g(X,V )− g(X,Z)g(Y, V ). (3.18)

We know R(X, ξ)ξ = X, and we can caculate easily R(ξ,X)ξ = X, hence

R̄(ξ,X)ξ = 2X − φX,

it’s trivial R̄(X,Y )ξ = R(X,Y )ξ = 0 and R̄(X, ξ)ξ = X. Also, φ−sectional curvature is

defined by

K(u) = K(X,φX) = R(X,φX;φX,X).

Assume X ∈ N be an unit vector field, then

R̄(X,φX;φX,X) = R(X,φX;φX,X)− g(X,X)g(φX, φX)

= R(X,φX;φX,X)− 1,

and we conclude K̄ = K − 1.

Lemma 3.3. Let N be an integral submanifold of Sasakian maniold M, then

∇ξY = [ξ, Y ],

for all X,Y ∈ N .

Proof. By 2.8, following equations are obtained

2g(∇ξX,Y ) = ξg(X,Y ) + g([ξ,X], Y ) + g([Y, ξ], X),

using ξg(X,Y ) = g(∇ξX,Y ) + g(X,∇ξY ) leads to

g(∇ξX,Y ) = g(X,∇ξY ) + g([ξ,X], Y ) + g([Y, ξ], X). (3.19)

Also,

2g(∇Xξ, Y ) = ξg(X,Y ) + g([X, ξ], Y ) + g([Y, ξ], X) = 0. (3.20)
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Comparing 3.19 and 3.20 complete the proof.

4. Cosymplectic manifolds

A normal almost contact metric manifold M is called a cosymplectic manifol if

(∇Xφ)Y = 0, ∇Xξ = 0, (4.21)

where ∇ denotes Levi-Civita connection. From we have

(∇̄Xφ)Y = −η(Y )φX − g(X,φY )ξ. (4.22)

Following facts easily can be obtained

(1) (∇̄XφY ) = φ∇XY − g(X,φY )ξ,

(2) ∇̄ξφX = ∇ξφX,

(3) ∇̄ξY = ∇ξY .

Using obtained facts we obtain

g(∇̄XφY, ξ) = g(φX, Y ), (4.23)

g(∇ξφX, Y ) = g(∇ξφY,X). (4.24)

From 2.4 and 3.9 we get

∇̄Xξ = −φ2X, (∇̄Xφ)ξ = −φX. (4.25)

Lemma 4.1. Let M be a cosymplectic manifold, then

η((∇̄Xφ)Y ) = η(∇̄XφY ),

for all X,Y ∈ TM .

Proof. Using 4.22 and other obtained facts for Cosymplectic manifolds we get

η((∇̄Xφ)Y ) = η(g(φX, Y )ξ) = g(φX, Y ) = η(∇̄XφY ),

the proof is complete.

Based on theorem 6.8 [1] it can be seen dη = 0, then

2dη(X,Y ) = Xη(Y )− Y η(X)− η([X,Y ]) = 0. (4.26)

Assume X,Y ∈ TM are orthogonal elements. Using 2.8, 4.25 and 4.26 we find out

2g(∇Xξ, Y ) = Xη(Y )− Y η(X) + g([X, ξ], Y ) + η([X,Y ]) + g([Y, ξ], X).
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Therefore g([X, ξ], Y ) + g([Y, ξ], X) = 0. Using 2.8 we have

η(∇XY ) = Xη(Y ), η(∇YX) = Y η(X). (4.27)

Since M is an almost cosymplectic manifold, from 4.26 following statement is valid

(∇Xη)(Y )− (∇Y η)(X) = 0.

Also, we have

(∇̄Xη)(Y ) = η(∇̄Xξ, Y ) = g(φX, φY ).

Thus

(∇̄Xη)Y + (∇̄Y η)X,

for all X,Y ∈ TM . Assume ∇̄XφY = 0, for all X,Y ∈ TM , from 3.9 we obtain

∇XφY = g(X,φY )ξ. (4.28)

For cosymplectic manifold we have

g(∇XφY, ξ) = Xη(φY )− g(φY,∇Xξ) = 0.

On the other side we know g(∇XφY, ξ) = g(X,φY ) we realized that X is orthogonal to Imφ

. From 4.28 we have φ2∇XY = 0, using 2.1 leads to

∇XY = η(∇XY )ξ.

Furthermore we have ∇YX = η(∇YX)ξ, comparing last two equations we have

[X,Y ] = (∇XY −∇YX)ξ. (4.29)

Now we have proved

Theorem 4.1. Let M be a cosymplectic manifold with semi symmetric metric connection ∇̄.

If there is vector fields X,Y ∈ TM , such that ∇̄XY = 0, then

φ([X,Y ]) = 0.

Proof. From 4.29 the proof is trivial.
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CHARACTERISTICS OF LIGHTLIKE HYPERSURFACES OF

TRANS-PARA SASAKIAN MANIFOLDS

MOHD DANISH SIDDIQI ID ∗

Abstract. In this research article, we study three lightlike hypersurfaces of trans-para

Sasakian manifolds with a quarter-symmetric metric connection: (1) re-current, (2) Lie re-

current and (3) Hopf-lightlike hypersurface. Also, we discuss some properties of a screen

semi-invariant lightlike hypersurface of trans-para Sasakian manifolds with a quarter-symmetric

metric connection. Furthermore, we show that a conformal hypersurface is screen totally

geodesic lightlike hypersurfaces. Finally we prove the integrability conditions for the dis-

tributions of screen semi-invariant lightlike hypersurface of a trans-para Sasakian manifold

with a quarter-symmetric metric connection.

1. Introduction

In 1975, S. Golab [11] initiated the study of a quarter-symmetric connection in a differ-

entiable manifold.

A linear connection ∇̄ on an n-dimensional Riemannian manifold (M, g) is called a quarter-

symmetric connection if its torsion tensor T of the connection ∇̄ [11]

T (X,Y ) = ∇̄XY − ∇̄YX − [X,Y ] (1.1)

satisfies

Received:2019-12-01 Revised:2020-03-28 Accepted:2020-06-24

2010 Mathematics Subject Classification: 53C15, 53C25, 53C20.

Key words: Lightlike hypersurfaces; trans-para Sasakain manifold; quarter-symmetric metric connection

∗ Corresponding author

109

HTTPS://ORCID.ORG/0000-0002-1713-6831


110 M. D. SIDDIQI

T (X,Y ) = η(Y )ϕX − η(X)ϕY, (1.2)

where η is a 1-form and ϕ is a (1, 1) tensor field.

In particular, if ϕ(X) = X, then the quarter-symmetric connection is reduces to the

semi-symmetric connection [9]. Thus the notion of a quarter-symmetric connection is the

extension of the semi-symmetric connection. Moreover if, a quarter-symmetric connection ∇̄

satisfies the condition

(∇̄Xg)(Y,Z) = 0 (1.3)

for all X,Y, Z ∈ T (M), where T (M) is the Lie algebra of vector fields of the manifold M ,

then ∇̄ is said to be a quarter-symmetric metric connection. Otherwise it is said to be a

quarter-symmetric non-metric connection.

After S. Golab [11], numerous geometers (see [16], [24], [25], [2]) continued the systematic

and specific study of a quarter-symmetric metric connection with various structures in sev-

eral ways to a different extent .

The differential geometry of lightlike hypersurfaces is one of the most specific topic in the

theory of lightlike submanifolds. Lightlike hypersurfaces have several significant applications

in mathematical physics [4], electromagnetic [5], black hole theory [3], string theory and

general relativity [10]. A submanifold of a semi-Riemannian manifold is called a lightlike

submanifold if the induced metric is degenerate. In 1996, K. L. Duggal, A. Bejancu estab-

lished the conception of lightlike submanifolds of almost contact metric manifolds [5].

Also K. L. Duggal with B. Sahin and others geometers have further developed this concept

and studied many new classes of lightlike submanifolds (for more details see [1], [6], [7], [8],

[13]).

Furthermore, K. L. Duggal and R. Sharma [9] also studied some properties of semi-

Riemmnain manifold with a semi-symmetric metric connection. They proved that these

geometric results have many physical applications in real world.

Inspired by the above studies others geometers like D. H. Jin have been exclusively studied

on lightlike hypersufaces with respect to the different connections such as semi symmetric

metric and quarter-symmetric metric connection (cf. [17], [18], [19], [20], [21], [22]).

On the other hand, in 1985, S. Kaneyuki and M. Konzai [23] initiated the study of a

para-complex structure and almost para-contact structure on a semi-Riemannian manifold.
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S. Zamkovoy [26] has extensively studied para contact metric manifolds after that there

are many papers discussed the contribution of para-contact geometry of a semi-Riemannian

manifolds ([27, 28]. In 2019, S. Zamkovoy [27] also introduced the geometry of trans-para-

Sasakian manifolds. An almost contact structure on a manifold M is called a trans-Sasakian

structure if the product manifolds M × R belongs to the class W4 [12]. In ([14], [15]), J. C.

Marrero and D. Chinea are completely characterized trans-Sasakian structures of types (α, β).

We note that the trans-Sasakian structures of type (α, 0), (0, β) and (0, 0) are α-Sasakian

[12], β-Kenmotsu [14], and cosympletic [14], respectively. In [27], S. Zamkovoy consider

the trans-para-Sasakian manifolds as an analogue of the trans-Sasakian manifolds. A trans-

para-Sasakian manifolds is a trans-para-Sasakian structure of type (α, β), where α and β are

smooth functions. The trans-para-Sasakian manifolds of type (α, β), are called para-Sasakian

manifolds (α = 1), para-Kenmotsu manifolds (β = 1) [14] and para-cosympletic manifolds

(α = β = 0).

Motivated by the above research articles, we consider the three types of lightlike hy-

persurfaces of trans-para-Sasakian manifolds with respect to the quarter-symmetric metric

connection in the present framework.

2. Preliminaries

A (2n+ 1)-dimensional smooth manifold M has an almost paracontact structure (ϕ, ξ, η)

if it admits a tensor field ϕ of type (1, 1), a vector field ξ and a 1-form η satisfying the

following compatibility conditions

ϕ2X = X − η(X)ξ, ϕ(ξ) = 0, η ◦ ϕ = 0, η(ξ) = 1. (2.4)

The distribution D : p ∈ M −→ Dp ⊂ TpM : Dp = Kerη = {X ∈ TpM : η(X) = 0} is

called a paracontact distribution generated by η.

By the definition of an almost paracontact structure the endomorphism ϕ has rank 2n.

If a (2n+1)-dimensional manifold M with (ϕ, ξ, η) structure admits a pseudo-Riemannian

metric g such that

g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y ), (2.5)

where X,Y ∈ T (M) then we say that M has an almost paracontact metric structure with

compatible metric g. Any compatible metric g with a given almost paracontact structure

with signature (n + 1, n). Note that setting Y = ξ, we have η(X) = g(X, ξ). Further, any
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almost paracontact structure admits a compatible metric.

Definition 2.1. An almost paracontact metric manifold (M,ϕ, η, ξ, g) is said to be a para-

contact metric manifold if (g(X,ϕY ) = dη(X,Y ), where dη(X,Y ) = 1
2(Xη(Y ) − Y η(X) −

η([X,Y ]) and η is a paracontact form.

A paracontact structure on M naturally gives rise to an almost paracomplex structure

on the product M × R. If this almsot paracomplex struture is integrable, then the given

paracontact metric manifold is said to a para-Sasakian (see [20]). A paracontact metric

manifold is a para-Sasakian if and only if

(∇Xϕ)Y = −g(X,Y )ξ + η(Y )X. (2.6)

The manifold (M,ϕ, ξ, η, g) of dimension (2n+ 1) is said to be trans-para-Sasakian manifold

if and only if

(∇Xϕ)Y = α(−g(X,Y )ξ + η(Y )X) + β(g(X,ϕY )ξ + η(Y )ϕX). (2.7)

From (2.7), we also have

∇Xξ = −αϕX − β(X − η(X)ξ). (2.8)

Now, we have the following lemma [17]

Lemma 2.1. [17] Let (M,ϕ, η, ξ, g) be a trans-para-Sasakian manifold. Then we have

R(X,Y )ξ = −(α2 + β2)[η(Y )X − η(X)Y ], (2.9)

R(ξ, Y )Z = −(α2 + β2)[g(Y, Z)ξ − η(Z)X], (2.10)

S(X, ξ) = −2n(α2 + β2)η(X), (2.11)

(∇Xη)Y = αg(X,ϕY )− β(g(X,Y )− η(X)η(Y )), (2.12)

for all X,Y, Z ∈ T (M), where R is a Riemannian curvature tensor and S is a Ricci curvature

tensor.
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3. Quarter-Symmetric metric connection

In this section, we express few tensorial relations for a trans-para Sasakian manifold with

quarter-symmetric metric connection.

Let ∇̄ be a linear connection and ∇ be the Levi-Civita connection of a almost paracontact

metric manifold M such that

∇̄XY = ∇XY +H(X,Y ), (3.13)

where H is a (1, 1)-tensor type. For ∇̄ to be a quarter-symmetric metric connection in M ,

we have [11]

H(X,Y ) =
1

2
[T (X,Y ) + T

′
(X,Y ) + T

′
(Y,X)], (3.14)

where

g(T
′
(X,Y ), Z) = g(T (Z,X)Y ). (3.15)

From (1.1) and (3.15), we find

T
′
(X,Y ) = η(X)ϕY − g(ϕX, Y )ξ. (3.16)

Using (1.1) and (3.16) in (3.14), we arrive at

H(X,Y ) = η(Y )ϕX − g(ϕX, Y )ξ. (3.17)

Therefore, a quarter-symmetric metric connection ∇̄ in a trans-para Sasakian manifold is

given by [16]

∇̄XY = ∇XY + η(Y )ϕX − g(ϕX, Y )ξ. (3.18)

Now, using (3.18), (2.7) and (2.8), we obtain the following results:

Theorem 3.1. Let M be a trans-para Sasakian manifold with a quarter-symmetric metric

connection. Then

(∇̄Xϕ)Y = (1− α) {g(X,Y )ξ − η(Y )X}+ β {g(X,ϕY )ξ + η(Y )ϕX} (3.19)

∇̄Xξ = (1− α)ϕX − β(X − η(X)ξ). (3.20)
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4. Lightlike hypersurfaces

Let M̄ be a semi-Riemannian manifold with index r, 0 < r < 2n + 1 and M be a

hypersurface of M̄ , with induced metric g = ḡ. M is a null hypersurface of M̄ if the metric

g is of rank 2n− 1. The orthogonal complement TM⊥ of the tangent space TM , given as

TM⊥ =
{
Xp ∈ TpM⊥ : gp(Xp, Yp) = 0, ∀ Yp ∈ Γ(TpM)

}
is a distribution of rank 1 on M . If TM⊥ ⊂ TM and then coincides with the radical

distribution Rad(TM) such that

Rad(TM) = TM ∩ TM⊥. (4.21)

A complementary bundle of TM⊥ in TM is a non-degenerate distribution of constant rank

2n− 1 over M . It is known as a screen distribution and denoted by S(TM).

Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian manifold M̄ . Then

there exists a unique rank over subbundle tr(TM) called the lightlike transversal vector

bundle of of M with respect to S(TM), such that for any null section ξ of Rad(TM) on

coordinate neighborhood U of M , there exists a unique section N of tr(TM) on U satisfying

g(N,X) = 0, g(N,N) = 0, g(N , ξ) = 1, ∀X ∈ Γ(S(TM)) (4.22)

Then, we have the decomposition on the tangent bundle

TM = S(TM)⊥Rad(TM), (4.23)

TM̄ = TM ⊕ tr(TM) = S(TM)⊥{Rad(TM)⊕ tr(TM)} . (4.24)

Let P : TM −→ S(TM) be the projection morphism. Then, we have the local Gauss-

Weingarten formulas of M and S(TM) as follows

∇̄XY = ∇XY +B(X,Y )N, (4.25)

∇̄XN = −ANX +∇trXN, (4.26)

∇XPT = ∇∗XPY + C(X,PY )ξ, (4.27)

∇̄Xξ = −A∗ξX − τ(X)ξ (4.28)

for any X,Y ∈ Γ(TM), where ∇ is a linear connection on M and ∇∗ is a linear connection on

S(TM) and B, AN and τ are called the local second fundamental form on T (M)respectively.
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It is well know that the induced connection ∇ is quarter-symmetric non-metric connection

and we get

(∇Xg) = B(X,Y )η(Z) +B(X,Z)η(Y ), (4.29)

T (X,Y ) = η(X)Y − η(Y )X. (4.30)

where T is the torsion tensor with respect to the induced connection ∇ on M , B is symmetric

on T (M) and η(X) = g(X,N) is a differential 1-form on TM .

For the second fundamental form B, we have

B(X, ξ) = 0. (4.31)

The local second fundamental forms are related to their shape operators by

B(X,PY ) = g(A∗ξX,PY ), g(A∗ξX,N) = 0, (4.32)

C(X,PY ) = g(ANX,PY ), g(ANX,N) = 0. (4.33)

From (4.32), A∗ξ is a S(TM)-valued real self-adjoint operator and satisfies

A∗ξξ = 0. (4.34)

5. Screen Semi-invariant lightlike hypersurfaces

This segment deal with screen semi-invariant lightlike hypersurfaces of a trans-para Sasakian

manifold equipped with a quarter-symmetric metric connection.

Let M be a lightlike hypersurface of a trans-para Sasakian manifold M̄ with ξ ∈ Γ(TM).

If ξ is a local section of ΓRad(TM), then

g(ϕξ, ξ) = 0, (5.35)

and ϕξ is tangent to M . Therefore, we obtain a distribution ϕ(Rad(TM)) of dimension 1

on M .

If

ϕ((tr(TM)) = (tr(TM), and ϕ(Rad(TM)) = Rad(TM), (5.36)

then lightlike hypersurface M is called a screen semi-invariant lightlike hypersurface of M̄

[1].
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Since M is a screen semi-invariant lightlike hypersurface

g(ϕN,N) = 0 (5.37)

g(ϕN, ξ) = −g(N,ϕξ) = 0. (5.38)

g(N, ξ) = 1 (5.39)

from (2.5), we obtain

g(ϕξ, ϕN) = −1. (5.40)

Therefore, ϕ(Rad(TM))⊕ϕ(tr(TM)) is a non-degenerate vector subbundle of screen distri-

butions S(TM).

Now, since S(TM) and ϕ(Rad(TM))⊕ϕ(tr(TM)) are non-degenerate distribution D̄0 such

that

S(TM) = D0⊥{ϕ(Rad(TM))⊕ ϕ(tr(TM))} . (5.41)

Therefore, ϕ(D0) = D0 and ξ ∈ D0. In view of (4.23), (4.25) and (5.41) we obtain the

followings

TM = D0⊥{ϕ(Rad(TM))⊕ ϕ(tr(TM))}⊥Rad(TM) (5.42)

TM̄ = D0⊥{ϕ(Rad(TM))⊕ ϕ(tr(TM))}⊥{Rad(TM)⊕ tr(TM)} . (5.43)

Now, we take D1 = Rad(TM)⊥ϕ(Rad(TM))⊥D0 and D2 = ϕ(tr(TM)) on M , we get

TM = D1 ⊕D2. (5.44)

Let the local null vector fields V = ϕξ and U = ϕN and denote the projection morphism of

TM into D1 and D2 by P1 and P2, respectively. Therefore , for X ∈ Γ(TM) ,we have

X = P1X + P2X, P2X = u(X)Ū , (5.45)

where u is a differential 1-form locally defined by

u(X) = −g(ϕξ,X), and v(X) = −g(ϕN,X). (5.46)

Operating ϕ on X, we get

ϕX = ϕ(P1X) + u(X)N. (5.47)
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If we put ϕX = ϕ(P1X) in above relation, we obtain the following:

ϕX = ωX + u(X)N, (5.48)

where ω is a tensor field defined as ω = ϕ ◦ P1 of type (1, 1).

Again operating ω to (5.48), we get

ω2X = X − η(X)ξ − u(X)(U), u(U) = 1. (5.49)

Replacing Y by ξ in (4.25) with (3.19) and (5.48), we have

∇Xξ = (1− α)ωX + β(X − η(X)ξ), (5.50)

B(X, ξ) = (1− α)u(X). (5.51)

From the covariant derivative of g(ξ,N) = 0 in terms of X with (3.19), (5.49) and (4.33), we

obtained that

C(X, ξ) = (1− α)v(X) + βη(X). (5.52)

Now, from (4.23) comparing the different components, we get

(∇Xω)Y = (1− α)[g(X,Y )ξ − η(Y )X] + β[g(X,ϕY )ξ + η(Y )ωX] (5.53)

+B(X,Y )Ū + u(Y )ANX,

(∇Xu)Y = u(Y )τ(X)−B(X,ωX) + βη(Y )u(X), (5.54)

(∇Xv)Y = v(Y )τ(X) + g(ANX,ωY ) + [(1− α)η(X) + βv(X)]η(Y ), (5.55)

∇X Ū = ω(ANX − τ(X)Ū + [(1− α)η(X) + βv(X)]ξ, (5.56)

∇X V̄ = ω(A∗EX)− τ(X)U + βu(X)ξ, (5.57)

B(X, Ū) = C(X, V̄ ). (5.58)

where Ū and V̄ are the structure tensor fields on M .
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6. Re-current screen semi-invariant lightlike hypersurface

Now, we give the following definition

Definition 6.1. Let M be a screen semi-invariant lightlike hypersurface of trans-para Sasakian

manifold M̄ and µ be a 1-form on M . If M admits a re-current tensor field ω such that

(∇Xω)Y = µ(X)ωY (6.59)

then said to be recurrent [9].

Theorem 6.1. Let M is a re-current screen semi-invariant lightlike hypersurface of a trans-

para Sasakian manifold M̄ with a quarter-symmetric metric connection. Then

(1) α = 1, β = 0 i.e., M̄ is a para-Sasakian manifold,

(2) ω is parallel with respect to the induced connection ∇ on M ,

(3) ANX = −µ(X)Ū − v(X)ξ

(4) A∗ξX = −µ(X)V̄ − u(X)ξ.

for all X,Y ∈ ΓT (M).

Proof. (1) From (5.53), we have

µ(X)ωY = (1− α)(g(X,Y )ξ − η(Y )X) + β(g(X,ϕY )ξ + η(Y )ωX) (6.60)

+B(X,Y )Ū + u(Y )ANX.

Setting Y = ξ in (6.60) and using (2.4), we obtained that

(1− α) {X − η(X)ξ + u(X)U}+ βωX = 0. (6.61)

Putting X = ξ in (6.61) and using the fact that ωξ = V , we have

(1− α)ξ + βV = 0. (6.62)

Taking the scalar product with N and Ū to the above equation, we get

α = 1, β = 0. (6.63)
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Therefore, M̄ is a para-Sasakian manifold with a quarter-symmetric metric connection and

we arrive at (1).

(2) Taking Y = ξ to (6.60) and in view (4.32) and (5.46), we get

µ(X)V = −g(X, ξ)ξ. (6.64)

Taking inner product of Ū it follows that µ = 0. Thus, ω is parallel with respect to the

connection ∇ and we arrive at (2).

(3) Now taking Y = Ū in (6.60) and using the fact that µ(X) = 0, we obtain (3). Similarly

taking inner product V̄ to (6.60), we get (4).

Theorem 6.2. Let M be a re-current screen semi-invariant lightlike hypersurface of a trans-

para Sasakian manifold M̄ with a quarter-symmetric metric connection. Then D1 and D2

are parallel distributions on M .

Proof. Taking inner product with V̄ to (5.53) and in view of (6.59), we can write as

B(X,Y ) = u(Y )u(ANX). (6.65)

Putting Y = V̄ and Y = ωZ in (6.65), we get

B(X,Y ) = 0, and B(X,ωZ) = 0. (6.66)

Now, from (5.48) and (5.57), we find for all Z ∈ Γ(D0),

g(∇Xξ, V̄ ) = B(X, V̄ ), (6.67)

g(∇XZ, V̄ ) = B(X,ωZ), g(∇X V̄ , V̄ ) = 0. (6.68)

From these equations and (6.66), we see that

∇XY ∈ Γ(D1), ∀X ∈ Γ(TM), ∀Y ∈ Γ(D1).

and hence D1 is a parallel distribution on M .

On the other hand, setting Y = Ū in (6.60, , we have

B(X, Ū)Ū = ANX. (6.69)

Using ωŪ = 0 in (6.69), it is obtained that

ω(ANX) = 0. (6.70)
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Using this result and equation (5.56) reduced to

∇X Ū = τ(X)Ū . (6.71)

It follows that

∇X Ū ∈ Γ(D2), ∀X ∈ Γ(TM),

and hence D2 is a parallel distribution on M .

Therefore immediate consequence of the above theorem and from equation (5.44), we have

the following theorem

Theorem 6.3. Let M be a re-current screen semi-invariant lightlike hypersurface of a trans-

para Sasakian manifold M̄ with a quarter-symmetric metric connection . Then M is locally

a product manifolds CŪ ×M [23], where CŪ is a null curve tangent to D2 and M is a leaf

of the distribution D1.

Now, we have following

Definition 6.2. [9] A lightlike hypersurface of semi-Riemannian manifold is said to be screen

conformal if there exists a non-zero smooth function λ such that

ANX = λA∗NX or C(X,PY ) = λB(X,Y ). (6.72)

Theorem 6.4. Let M be a re-current screen semi-invariant lightlike hypersurface of a trans-

para Sasakian manifold M̄ with a quarter-symmetric metric connection. Consider that M is

a screen conformal lightlike hypersurface. Then M is either geodesic or screen totally geodesic

if and only if X ∈ Γ(D0).

Proof. Since M is screen conformal, from Theorem (6.1) using relations (3) and (4),

we get

µ(X)U + v(X)ξ = λ(µ(X)V̄ + u(X)ξ). (6.73)

Taking an inner product with V̄ to (6.73), we have

µ(X) = 0. (6.74)

So, by using relation (3), (4) and Theorem (6.1), we get the required assertion.
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7. Lie re-current screen semi-invariant lightlike hypersurface

This section starts with the following definition:

Definition 7.1. [9] Let M be a screen semi-invariant lightlike hypersurface of a trans-para

Sasakian manifold M̄ with a quarter-symmetric metric connection and ρ be a 1-form on M .

Then M is said to be Lie re-current if it admits a Lie re-current tensor field ω such that

(LXω)Y = ρ(X)ωY, (7.75)

where LX denotes the Lie derivative on M with respect to X that is

(LXω)Y = [X,ωY ]− ω[X,Y ]. (7.76)

If the structure tensor field ω satisfies the condition

LXω = 0, (7.77)

then ω is said to be Lie parallel. A screen semi-invaraint lightlike hypersurface M of a

trans-para Sasakian manifold M̄ with a quarter-symmetric metric connection is called Lie

re-current if its structure tensor field ω is Lie re-current.

Theorem 7.1. Let M be a Lie re-current screen semi-invariant lightlike hypersurface of a

trans-para Sasakian manifold M̄ with a quarter-symmetric metric connection . Then the

structure tensor field ω is Lie parallel.

Proof. In view of (7.76), (7.77) and (5.53), we get

ρ(X)ωY = −∇ωYX + ω∇YX + u(Y )ANX −B(X,Y )Ū (7.78)

+(1− α)[g(X,Y )ξ − η(Y )X] + βg[X,ϕY )ξ + βη(Y )ωX].

Putting Y = E in (7.78) and by the use of (4.31), we have

ρ(X)V̄ = −∇V̄X + ω∇EX − βu(X)ξ. (7.79)

Taking inner product with V̄ to (7.79), we obtain

g(∇V̄X, V̄ ) = u(∇V̄X) = 0, and η(∇V̄X) = βu(X). (7.80)

Replacing Y by V̄ in (7.78) and using the fact that η(Y ) = 0, we have

ρ(X)E = −∇ĒX + ω∇V̄X +B(X, V̄ ) + Ū + (1− α)u(X)ξ. (7.81)
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Applying ω to the above equation, using (5.49) with (7.80), it is obtained that

ρ(X)E = −∇ĒX + ω∇V̄X + Ū + βu(X)ξ. (7.82)

Comparing the above equation with (7.79), we get ρ = 0. Therefore we arrive at ω is

Lie-parallel.

Theorem 7.2. Let M be a Lie re-current screen semi-invariant lightlike hypersurface of a

tans-para Sasakian manifold M̄ with a quarter-symmetric metric connection. Then α = 1,

β = 0 and M̄ is a para Sasakian manifold.

Proof. Replacing X by Ū in (7.79) and using (4.32), (4.33), (5.46), (5.53)-(5.56) and

ωŪ = 0 and ωξ = 0, it is obtained that

u(Y )AN Ū − ω(ANωY )−ANY − τ(ωY )Ū (7.83)

−αv(Y )ξ + βη(Y )ξ − αη(Y )Ū = 0.

Taking an inner product with ξ into (7.83) and using the fact that

C(X, ξ) = (1− α)v(X) + βη(X),

it is obtained that (1− α)v(Y ) = 0 and βη(Y ) = 0, and hence α = 1, β = 0. That is, M̄ is

a para Sasakian manifold.

Theorem 7.3. Let M be a Lie re-current screen semi-invariant lightlike hypersurface of a

trans-para Sasakian manifold M̄ with a quarter-symmetric metric connection . Then the

following statements are holds:

(1) τ = βη on TM , and

(2) A∗ξŪ = 0, and A∗ξ V̄=0.

for all X,Y ∈ T (M).

Proof. Taking inner product with N to (7.79) and using, (4.33), we have

−g(∇YX,N) + g(∇YX, Ū) = βη(Y )u(X), (7.84)

since α = 1 in (7.84). Replacing X by ξ in (7.84) and using (4.28) and (4.32), we get

B(X, Ū) = τ(ωX). (7.85)
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Taking X = Ū and using (5.58) and ωŪ = 0, we have

C(Ū , V̄ ) = B(Ū , Ū) = 0. (7.86)

taking the inner product with V̄ in (7.82) and using (4.32), (5.58), (7.86), and α = 0, it is

obtained that

B(X, Ū) = −τ(ωX). (7.87)

Comparing the above equation with (7.81), it is obtained that τ(ωX) = 0.

Replacing X by V̄ in (7.83) and using (5.57), we have

B(ωY, Ū) + βη(Y ) = τ(Y ). (7.88)

Taking Y = Ū and Y = ξ and using ωŪ = ωξ = 0, it is obtained that

τ(Ū) = 0, τ(ξ) = −β. (7.89)

Setting X = ωY to τωX) = 0 and using (5.49) and (7.89), we get τ(X) = −βη(X). Thus

we have (1).

As τ(ωX) = 0, from (4.32) and (7.84), we have g(A∗ξŪ ,X) = 0. The non-degeneracy of

S(TM) implies that A∗EŪ = 0. Putting X by ξ to (7.80) and using (4.34) and τ(ωX) = 0,

then we obtained A∗ξ V̄ = 0, thus we arrive at (2).

8. screen semi-invariant Hopf lightlike hypersurface

Definition 8.1. Let M be a screen semi-invariant lightlike hypersurface of a trans-para

Sasakian manifold M̄ and Ū be a structure tensor field on M . The structure tensor field Ū

is called principal if there exists a smooth function σ and X ∈ (TM) such that

A∗ξX = σŪ. (8.90)

A screen semi-invariant lightlike hypersurface M of a trans-para Sasakian manifold M̄ is

called a Hopf lightlike hypersurface if it admits principal vector field Ū ∈ (M) [9].

If we consider (8.90), from (4.32) and (5.46), we obtain

B(X, Ū) = −σv(X), and C(X, V̄ ) = −σu(X). (8.91)

Now, we have the following theorems
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Theorem 8.1. Let M be a screen semi-invariant Hopf lightlike hypersurface of a trans-para

Sasakian manifold M̄ with a quarter-symmetric metric connection. If M is screen totally

umbilical then κ = 0 and M is a screen totally geodesic null hypersurface for X,Y ∈ ΓT (M).

Proof. We know that M is screen totally umbilical lightlike hypersurface if there

exists a smooth function f such that ANX = fg(X,Y ) or

C(X,PY ) = fg(X,Y ), (8.92)

and f = 0, we say that M is a screen totally geodesic lightlike hypersurface.

Therefore, in (8.92) replacing PY with V̄ and use of (5.46) and (8.91), we find

fv(X) = fu(X). (8.93)

Putting X = Ū in (8.93) we obtain f = 0. So, we get AN = 0 = C and κ = 0 = g(ANX, V̄ ).

Therefore κ = 0 and M is a screen totally geodesic lightlike hypersurface.

Theorem 8.2. Let M be a screen semi-invariant Hopf lightlike hypersurface of a trans-para

Sasakian manifold M̄ with a quarter-symmetric metric connection. If V̄ is a parallel null

vector field then M is a Hopf lightlike hypersurface such that κ = 0.

Proof. Let us consider V̄ is parallel null vector field, from (5.47) and (5.57), we find

ϕ(A∗EX)− βu(A∗EX)N + τ(X)V̄ . (8.94)

Applying ϕ to (8.94) and in view of (2.4), we have

A∗EX − βu(A∗EX)Ū + τ(X)E = 0. (8.95)

Taking inner product with N to (8.95), we get at τ = 0, which yields

A∗EX = βu(A∗EX)Ū . (8.96)

Therefore, we can say that M is a Hopf lightlike hypersurface. If we take inner product with

Ū to (8.96), we find κ(X) = 0 = B(X, Ū).

9. Integrability of screen semi-invariant lightlike hypersurface

This section explores the integrability conditions for the distributions engage with the

screen semi-invariant hypersurface of a trans-para Sasakian manifold with a quarter-symmetric

metric connection :
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We note that X ∈ D1 if and only if u(X) = 0. Now from (5.54), we have for all

X,Y ∈ Γ(TM).

u(∇YX) = ∇Xu(Y ) + u(Y )τ(X)−B(X,ωY ) + βη(Y )u(X) (9.97)

from which we get

u([X,Y ]) = B(X,ωY )−B(ωX, Y ) +∇Xu(Y )−∇Y u(X) (9.98)

+u(Y )τ(X)− u(X)τ(Y ) + βη(Y )u(X)− βη(X)u(Y ).

Let X,Y ∈ D1. Then u(X) = 0 = u(Y ), and from the equation (9.98) we get

u([X,Y ]) = B(X,ωY )−B(ωX, Y ),

for all X,Y ∈ D1. Thus we obtain a necessary and sufficient condition for the integrability

of the distribution D1 in the following:

Theorem 9.1. Let M be a screen semi-invariant lightlike hypersurface of a trans-para

Sasakian manifold M̄ with a quarter-symmetric metric connection . Then the distribution

D1 is integrable if and only if

B(X,ωY ) = B(ωX, Y ), X, Y ∈ Γ(D1). (9.99)

As a consequence of the theorem (9.1), we obtain a results based on radical anti-invariant

lightlike hypersurface of trans-para Sasakian manifolds:

Theorem 9.2. Let M be a radical anti-invariant lightlike hypersurface of a trans-para

Sasakian manifold M̄ with a quarter-symmetric metric connection. Then the screen dis-

tribution S(TM) of M is an integrable distribution if and only if

B(X,ωY ) = B(ωX, Y ). (9.100)

Now, we find a necessary and sufficient condition for the distribution D2 to be integrable.

Theorem 9.3. Let M be a screen semi-invariant lightlike hypersurface of a trans-a Sasakian

manifold M̄ with a quarter-symmetric metric connection . Then the distribution D2 is inte-

grable if and only if

ANξ + (1− α)Ū + βωŪ = 0 (9.101)
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Proof. It is Noted here that X ∈ D2 if if and only if ϕX = ωX = 0 . Now for all

X,Y ∈ Γ(TM), in view of (5.53), we arrive at

ω(∇XY ) = ∇Xω(Y )− u(Y )ANX −B(X,Y )Ū (9.102)

(1− α)(g(X,Y )ξ − η(Y )X) + β(g(X,ϕY )ξ + η(Y )ωX).

From (9.102), we get

ω([X,Y ]) = ∇Xω(Y )−∇Y ω(X) + u(X)ANY − u(Y )ANX (9.103)

+(1− α)(η(Y )X − η(X)Y ) + β(η(Y )ωX − η(X)ωY ).

In particular for X,Y ∈ D2, we get

ω([X,Y ]) = +u(X)ANY − u(Y )ANX + (1− α)(η(Y )X − η(X)Y ) (9.104)

+β(η(Y )ωX − η(X)ωY ).

Setting X = Ū and Y = ξ and hence, D2 is integrable if and only if

ω[Ū , ξ] = 0 (9.105)

which, in view of (9.105), is equivalent to (9.101).
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Abstract. We analyze null magnetic trajectories of a magnetic field on a timelike surface

in Minkowski 3−space E3
1. We show that the Lorentz force can be written into the Darboux

frame field of a null trajectory on the surface. We give the necessary and sufficient condition

for writing a null curve as the magnetic trajectory of the magnetic field. After creating a

variation, we derive the Killing magnetic flow equations with regard to the geodesic curva-

ture, geodesic torsion and normal curvature of the curve γ on the timelike surface. Finally

we examine the geodesics of some timelike surfaces in E3
1.

1. Introduction

Any magnetic vector field is known divergence zero vector field in three- dimensional

spaces. A magnetic trajectory of a magnetic flow created by magnetic vector field is a curve

called as magnetic. Although the problem of investigating magnetic trajectories appears to

be physical problem, recent studies show that the characterization of magnetic flow in a mag-

netic field have brought variational perspective in more geometrical manner. In particular,

magnetic curves have been developed by techniques of differential geometry and methods of
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calculus of variation from basic spaces to manifolds because the Lorentz force equation is

a minimizer of the functional L : Γ→ R defined by

L (γ) :
1

2

∫
γ

〈
γ′, γ

〉′
dt+ ω

(
γ′
)
dt,

where Γ is a family of smooth curves that connect two fixed point of U, γ is a curve choosing

from Γ and ω is a potential 1−form. The Euler-Lagrange equation of the functional L is

derived as

φ
(
γ′
)

= ∇γ′γ′, (1.1)

where φ is the skew-symmetric operator. The critical point of the functional L corresponds to

a solution of the Lorentz force equation. So the solutions of the equations could be interpreted

with a more geometric point of view [ 1, 3, 4, 5, 7, 10, 13 ].

In this work we consider null Killing magnetic trajectories on a timelike surface S in

Minkowski 3−space E3
1. Also, we get equation of the Lorentz force by using the Darboux

frame field of a null magnetic curve on the such surface and give equations of the Killing

magnetic flow by means of the structures of a magnetic vector field in E3
1. Then we apply

this formulation to give results about magnetic curves on the pseudo-sphere and the pseudo-

cylinder surfaces, so we show that geodesics of these surfaces are null magnetic curves.

2. Preliminaries

We consider that E3
1

denotes Minkowski 3−space with the inner product

〈u,w〉 = −u1w1 + u2w2 + u3w3

which is a non-degenerate, symmetric and bilinear form and the vector product

u× w = (−u2w3 + u3w2, u3w1 − u1w3, u1w2 − u2w2) ,

where u = (u1 , u2 , u3), w = (w1 , w2 , w3) ∈ E3
1
. A vector u in E3

1
is called a spacelike vector

if 〈u, u〉 > 0 or u = 0, a timelike vector if 〈u, u〉 < 0, or null (lightlike) vector if 〈u, u〉 = 0

and u 6= 0. A regular curve in E3
1

is called spacelike, timelike or null, if its velocity vector is

spacelike, timelike or null, respectively. A non-degenerate surface is named in terms of the

induced metric. If the induced metric is indefinite, a non-degenerate surface is called timelike

[9 12 ].

We can assign a frame to any point of a null curve since we investigate the geometry of

the curve. This frame is known as Cartan frame field along a null curve in E3
1. Let γ = γ(s)
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be a null curve in E3
1
. Let T denote a null vector field along γ. So, there exists a null vector

field B along γ satisfying 〈T,B〉 = 1. If we write N = B × T , then we can obtain a Cartan

frame field F = {T,N,B} along γ. A Cartan framed null curve (γ,F) is given by

T (s) = γ′(s), N(s) = γ′′(s), B(s) = −γ′′′(s)− 1

2
< γ′′′(s), γ′′′(s) > γ′(s)

at a point γ (s) , where

〈T, T 〉 = 〈B,B〉 = 〈T,N〉 = 〈N,B〉 = 0,

〈N,N〉 = 〈T,B〉 = 1.

We have the following derivative equations of the Cartan frame (generally knows as Frenet

equations) 
T ′

N ′

B′

 =


0 1 0

−κ 0 −1

0 κ 0




T

N

B

 ,

where

κ(s) =
1

2
< γ′′′(s), γ′′′(s) >,

[2, 8, 12].

In order to study the geometry of a null curve on a timelike surface, we can construct a

suitable frame, which is known the Darboux frame field, to any point of the curve. Let (γ,F)

be a null curve with frame F = {T,N,B} and S an oriented timelike surface in Minkowski

3−space. The Darboux frame at γ(s) of γ is the orthonormal basis {T,Q, n} of E3
1
, where Q

is the unique vector obtained by

Q =
1

〈V, T 〉
{V − 〈V, V 〉

2 〈V, T 〉
T}, V ∈ Tγ(s)M, 〈V, T 〉 6= 0,

and n is the spacelike unit normal of S which is defined by n = T ×Q. So, we have

〈T, T 〉 = 〈Q,Q〉 = 〈Q,n〉 = 〈T, n〉 = 0,

〈n, n〉 = 〈T,Q〉 = 1.

The first order variation of {T,Q, n} is expressed as follow
T ′

Q′

n′

 =


κg 0 κn

0 −κg τg

−τg −κn 0



T

Q

n

 , (2.2)
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where the functions κg, κn and τg are called the geodesic curvature, the normal curvature

and the geodesic torsion of the curve γ, respectively. From the comparison of Cartan and

Darboux frames, we have

κn = ±1 (2.3)

[6, 12].

3. Magnetic Vector Fields

The Lorentz force φ corresponding the magnetic field V is given by

φ
(
γ′
)

= V × γ′.

A curve γ in E3
1

is called magnetic curve of a magnetic field V if its tangent vector field

satisfies

∇γ′γ′ = φ
(
γ′
)

= V × γ′. (3.4)

The Lorentz force φ of a magnetic field F in E3
1

is defined to be skew symmetric operator

given by

< φ (X) , Y >= F (X,Y )

for vector fields X and Y . The mixed product of the vector fields X, Y and Z is given by

< X × Y,Z >= Ω (X,Y, Z) ,

where Ω a volume on E3
1
. So, the Lorentz force of the corresponding Killing magnetic force

is given as φ (X) = V ×X, where V is a Killing vector field [13].

Then we can give the following proposition for the Lorentz force.

Proposition 3.1. Let γ be a null magnetic curve on a timelike surface S ⊂ E3
1
and {T,Q, n}

is the Darboux frame field along γ. Then the Lorentz force in the Darboux frame {T,Q, n} is

written as follows

φ (T ) = κgT + κnn, (3.5)

φ (Q) = −κgQ+ ωn (3.6)

and

φ (n) = −ωT − κnQ, (3.7)

where the function ω (s) =< φ (Q (s)) , n (s) > associated with each magnetic curve is qua-

sislope measured with respect to the magnetic vector field V .
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Proof. The unit tangent vector to γ at a point γ(s) of γ is T (s) = γ′ (s) . Then from

(1.1), we have

φ (T ) = ∇TT = V × T.

By using the Darboux formulas (2.2), we get

φ (T ) = κgT + κnn

and

< φ (T ) , Q >= κg and < φ (T ) , n >= κn.

Similarly, we can write the linear expansion of φ (Q) , φ (n) ∈ S as follows

φ (Q) =< φ (Q) , Q > T+ < φ (Q) , T > Q+ < φ (Q) , n > n

and

φ (n) =< φ (n) , Q > T+ < φ (n) , T > Q+ < φ (n) , n > n,

respectively. Taking into consideration Eqs. (3.4) and (3.5), we get

< φ (Q) , T >=< V ×Q,T >= − < V × T,Q >= − < φ (T ) , Q >= −κg

and

< φ (n) , T >=< V × n, T >= − < V × T, n >= − < φ (T ) , n >= −κn.

Since φ is a skew-symmetric operator, we get < φ (Q) , Q >=< φ (n) , n >= 0.

Then by using Proposition 3.1 we can write the magnetic vector field according to Darboux

frame on a timelike surface S in the following.

Proposition 3.2. A null curve γ : I ⊂ R → S is a magnetic trajectory of a magnetic field

V if and only if V can be written along γ as

V = ωT − κnQ+ κgn. (3.8)

Proof. Suppose that γ is a null magnetic curve along a magnetic field V with the Dar-

boux frame field {T,Q, n}. Then, V can written as V =< V,Q > T+ < V, T > Q+ < V, n > n.

To find coefficient of V , we use the Lorentz force in Darboux frame equations (3.5−3.7):

ω = < φ (Q) , n >=< V,Q× n >=< V,Q >,

κn = < φ (T ) , n >= − < V, n× T >= − < V, T >
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and

κg =< φ (T ) , Q >=< V, T ×Q >=< V, n > .

4. Killing Magnetic Flow Equation for Null Magnetic Trajectories

Let γ : I → S be pseudo-parametrized null curve on a timelike surface in E3
1

and V a

magnetic vector field along that curve. One can take a variation of γ in the direction of V,

say a map

Γ : [0, 1]× (−ε, ε) → S

(s, t) → Γ(s, t)

which satisfies

Γ (s, 0) = γ (s) ,

(
∂Γ(s, t)

∂t

)
t=0

= V (s) and

(
∂Γ(s, t)

∂s

)
t=0

= γ′ (s) .

We recall that a spacelike or timelike curve in E3
1 can be reparametrize by an arclength.

However, there would be not sense reparametrize by the arclength for a null curve γ. However,

it has pseudo arc-length parametrized α(s) = γ(φ(s)), such that ‖α′′(s)‖ = 1, where φ is the

differential function in suitable interval. Thus, we have the following equations:

T (s, t) =
(
∂Γ(s,t)
∂s

)
t=0

= γ′ (s) ,

β(s, t) =
(
<
(
∂2Γ(s,t)
∂s2

)
t=0

,
(
∂2Γ(s,t)
∂s2

)
t=0

>
)1/4

,

( see [9, 12 ]) .

By using above variational formulas, we have the following equalities (by similar method

that of [3, 10] ).

Lemma 4.1. We consider that γ is a null curve on a timelike surface in E3
1

and a magnetic

vector field V is a variational vector field along the variation Γ. So we can give the following

expressions;

V (β) =
1

2β3
< ∇T∇TV,∇TT >, (4.9)

V (κ) =
1

2
V (< ∇T∇TT,∇T∇TT >) =< ∇3

TV,∇2
TT > . (4.10)

Proposition 4.1. (see [11]) . Let V (s) be the restriction to γ (s) of a Killing vector field,

then

V (β) = V (κ) = 0. (4.11)

Thus, Killing magnetic flow equations can be given the following theorem.
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Theorem 4.1. Let γ be a null curve on S in E3
1
. Suppose that V = ωT − κnQ + κgn is

a Killing vector field along γ. Then the magnetic trajectories are curves on S satisfying

following differential equations

bκg + cκn = 0 (4.12)

and

−a′ + 2cτg + b′κ′g − bκgκ′g − cκnκ′g + κ2
gb

′ − bκ3
g

− cκnκ2
g − κnτgb′ + 2bκgκnτg + c′κgκn = 0,

(4.13)

where

a = ω′′ + 2ω′κg + ωκ′g − 2κ′gτg − κgτ ′g + ωκ2
g − κ2

gτg

−ωκnτg + κnτ
2
g ,

b = −ω + τg − κ′gκn,

c = 2ω′κn + ωκgκn − κgκnτg − κnτ ′g + κ′′g .

Proof. Assume that V is a Killing vector field along γ on S. Along any magnetic

trajectory γ, we have V = ωT − κnQ+ κgn. Using (2.3), we get

∇TV =
(
ω′ + ωκg − κgτg

)
T +

(
ωκn − κnτg + κ′g

)
n. (4.14)

We calculate derivative of (4.14) as follows

∇2
TV =

(
ω′′ + 2ω′κg + ωκ′g − 2κ′gτg − κgτ ′g + ωκ2

g

−κ2
gτg − ωκnτg + κnτ

2
g

)
T +

(
−ω + τg − κ′gκn

)
Q(

2ω′κn + ωκgκn − κgκnτg − κnτ ′g + κ′′g
)
n

= aT + bQ+ cn.

(4.15)

Substituting (4.15) into (4.9), we derive

V (β) = bκg + cκn = 0.

For variation of κ, taking derivative of (4.15), we have,

∇3
TV = (a′ + aκg − cτg)T + (b′ − bκg − cκn)Q

+ (aκn + bτg + c′)n.
(4.16)

Substituting (4.16), (2.2) and (2.3) into (4.10), we obtain

V (κ) = −a′ + 2cτg + b′κ′g − bκgκ′g − cκnκ′g + κ2
gb

′ − bκ3
g

− cκnκ2
g − κnτgb′ + 2bκgκnτg + c′κgκn = 0.

Definition 4.1. Any null curve on a timelike surface S is called the null magnetic trajectory

of a magnetic field V if it satisfies the differential equation system (4.12) and (4.13).
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5. Applications

Magnetic trajectories on a timelike pseudo-sphere: We consider the timelike pseudo-

sphere with radius r,

S2
1 (r) =

{
(x1, x2, x3) ∈ E3

1
: x2

1 + x2
2 + x2

3 = r2
}
.

The geodesic torsion τg vanishes for all curves on S2
1 (r) and the normal curvature κ2

n = 1

[12]. Then any null geodesic curve γ on S2
1 (r) is a magnetic trajectory of a magnetic field V

if and only if V can be written along γ as

V = ωT ±Q,

where ω is a constant.

Magnetic trajectories on a pseudo-cylinder: The pseudo-cylinder

C2
1 (1) =

{
(x, y, z) ∈ E3

1

∣∣− x2 + y2 = 1, z ∈ R
}

is a timelike surface and parametrized by

X (u, v) = (sinh s, cosh s, s) ,

where r is radius of the circle. Then for a null geodesic

γ (s) = (sinh s, cosh s, s)

on C2
1 (1) , we have

κg = 0, κn = 1 and τg = −1

2
,

(see [6, 12]). So, the null geodesic γ on a pseudo-cylinder are magnetic trajectories of the

magnetic field

V = ωT −Q

where ω is a constant (see Fig (5.1)).
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Figure 1. A null magnetic trajectory on the pseudo-cylinder
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