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EDITORIAL

BAYRAM ŞAHIN ID

Dear readers and authors, welcome to the new volume of International Journal of Maps

in Mathematics. In the first issue of this volume, besides presenting 5 important papers to

you, we also announce our new member in the editorial board of the journal. Dr. İbrahim

Şentürk, who has been with us since the establishment of the journal, will now serve as the

new area editor for the Mathematical Logic section of our Journal.

Dr. İbrahim Şentürk received his PhD in Mathematics, in 2018. His research interests

include algebraic logical structures, decision systems, lattice theory, multi-valued logic and

fuzzy logic. He is currently an Associative Professor at the Department of Mathematics at

Ege University, İzmir, Türkiye.

We welcome and congratulate Dr. İbrahim Şentürk.
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THE SPECIAL CURVES OF FIBONACCI AND LUCAS CURVES

EDANUR ERGÜL ID ∗ AND SALIM YÜCE ID

Abstract. In this paper, we introduce the contrapedal, radial, inverse, conchoid and

strophoid curves of Fibonacci and Lucas curves which are defined by Horadam and Shannon,

[18]. Moreover, the graphs of these special curves are drawn by using Mathematica.

Keywords: Fibonacci curve, Lucas curve, Contrapedal curve, Radial curve, Inverse curve,

Conchoid curve, Strophoid curve

2010 Mathematics Subject Classification: 53A04, 11B39.

1. Introduction

The plane curves in the Euclidean plane are one of the most essential subjects in differential

geometry. Thanks to a growing interest in this subject, it is demonstrated that any plane

curve brings about other plane curves through several constructions. Some of these are

contrapedal, radial, inverse, conchoid and strophoid curves. Contrapedal curves are employed

in many areas such as mathematics (see [16]) and physics (see [20]). Radial curve was studied

by Robert Tucker in 1864, [25]. Geometrical inversion is originated from Jakob Steiner in

1824. In 1825, Adolphe Quetelet followed closely him by giving some examples. Apparently,

it independently discovered by Giusto Bellavitis in 1836, by Stubbs and Ingram in 1842-

3, and by Lord Kelvin who employed it in his electrical researches in 1845, [25]. Inverse

curve has a important role in mathematics (see [6]). Conchoid is a plane curve invented
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by the Greek mathematician Nicomedes, who applied it to the problems of duplication the

cube. The conchoid has been used by later mathematicians, notably Sir Isaac Newton, in

the construction of various cubic curves, [23]. Conchoids make a significant contribution in

many applications as optics (see [2]), astronomy (see [9]), engineering in medicine and biology

(see [8], [12]), mechanical in fluid processing (see [21]), physics (see [22]), electromagnetic

research (see [26]), etc. The Conchoid of Nicomedes, which is the conchoid of a line, and the

Limaçon of Pascal, which is the conchoid of a circle, are the two most famous conchoids,

[17]. Strophoid curve initially appears in work by the English mathematician Isaac Barrow,

who was Isaac Newton’s teacher, in 1670. However, the curve actually is described in his

letters by Evangelista Torricelli before Barrow’s work around 1645. In 1846, the strophoid,

whose meaning is a ”belt with a twist”, was named by Montucci, [4]. J. Booth called it

the logocyclic curve in his article in the 19th century, [3]. For further information about

contrapedal, radial, inverse, conchoid, and strophoid curve, we recommend the reader to go

through [7], [11], and [25].

The famous book called the Liber Abaci of Italian mathematician Leonardo de Pisa who

is known as Fibonacci also posed a problem concerning the progeny of a single pair of rabbits

which is the foundation of the Fibonacci sequence, [5]. During the time Fibonacci wrote

Liber Abaci, Fibonacci numbers were not recognized as something special. The sequence

was given the current name ”Fibonacci numbers” by French mathematician Edouard Lucas

who later created his own sequence based on the pattern set by Fibonacci. Lucas numbers

are very similar to Fibonacci numbers in that they form a sequence of numbers and also

closely related to Fibonacci numbers, [15].

In 1988, Horadam and Shannon defined Fibonacci and Lucas curves on Euclidean plane,

(see [18]). Moreover, there are many articles about three dimensional Fibonacci curve, (see

[13], [19]). In addition, Akyiğit, Erişir and Tosun studied on the evolute, parallel and pedal

of Fibonacci and Lucas curves in 2015, (see [1]). In 2017, Özvatan and Pashaev had a study

on generalized Fibonacci sequences and Binet-Fibonacci curves, (see [14]). They constructed

Binet-Fibonacci curve in complex plane by extending Binet’s formula to arbitrary real num-

bers. In this article, we are interested in investigation of the contrapedal, radial, inverse,

conchoid and strophoid curves of Fibonacci and Lucas curves and obtaining the figures of

these special curves.
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1.1. Fibonacci and Lucas Numbers. This subsection gives a brief overview of Fibonacci

and Lucas numbers. More detailed information about them can be found in [10] and [24].

1.1.1. Fibonacci Numbers.

Definition 1.1. The nth Fibonacci number Fn is defined by

Fn = Fn−1 + Fn−2

with initial conditions

F1 = F2 = 1,

where n ≥ 3. In this case, Fibonacci numbers are given by

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . , Fn, . . .

The ratio of consecutive Fibonacci numbers gives us a new sequence:

1

1
,
2

1
,
3

2
,
5

3
,
8

5
, . . . ,

Fn+1

Fn
, . . .

Lemma 1.1. The ratio of two consecutive Fibonacci numbers approaches 1+
√
5

2 as n → ∞.

More precisely,

lim
n→∞

Fn+1

Fn
=

1 +
√
5

2
.

Definition 1.2. The positive root 1+
√
5

2 = 1.618... of the equation x2 − x − 1 = 0 is called

golden ratio.

Theorem 1.1. Let α and β be the solutions of the quadratic equation

x2 − x − 1 = 0; so α = 1+
√
5

2 and β = 1−
√
5

2 . Then, the relation that gives us the nth

term of Fibonacci sequence is given by

Fn =
αn − βn

α− β
=

αn − βn

√
5

,

where n ≥ 1.

Corollary 1.1. Let α = 1+
√
5

2 and β = 1−
√
5

2 . Then,

1. αβ = −1 2. α+ β = 1 3. α− β =
√
5

4. α2 + 1 =
√
5α 5. α = 2− β2 6. α2 + β2 = 3
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1.1.2. Lucas Numbers.

Definition 1.3. The nth Lucas number Ln is defined by

Ln = Ln−1 + Ln−2

with initial conditions

L1 = 1, L2 = 3,

where n ≥ 3. In this case, Lucas numbers are given by

1, 3, 4, 7, 11, 18, 29, 47, . . . , Ln, . . .

Lemma 1.2. The ratio of two consecutive Lucas numbers approaches 1+
√
5

2 as n → ∞. That

is,

lim
n→∞

Ln+1

Ln
=

1 +
√
5

2
.

Theorem 1.2. Let α and β be the solutions of the quadratic equation

x2 − x − 1 = 0; so α = 1+
√
5

2 and β = 1−
√
5

2 . Then, the relation that gives us the nth

term of Lucas sequence is given by

Ln = αn + βn,

where n ≥ 0.

1.2. Fibonacci and Lucas Curves.

Definition 1.4. Let I ⊆ R be an open interval of R. Then, Fibonacci curve is defined by

f : I → R2

θ 7→ f(θ) = (x(θ), y(θ)) ,

where

x(θ) =
αθ − α−θ cos(θπ)√

5
(1.1)

and

y(θ) =
−α−θ sin(θπ)√

5
(1.2)

including α = 1+
√
5

2 , [18].
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Figure 1. Fibonacci curve

In the interval I = (2, 6), the graph of Fibonacci curve can be seen in Figure 1. By taking

derivative of the equations (1.1) and (1.2) with respect to θ, we obtain that

dx

dθ
= x′(θ) =

α−θ
[
α2θs+ s cos(θπ) + π sin(θπ)

]
√
5

(1.3)

and

dy

dθ
= y′(θ) =

α−θ
[
− π cos(θπ) + s sin(θπ)

]
√
5

, (1.4)

where α = 1+
√
5

2 and s = log
(
1+

√
5

2

)
. After taking derivative of the equations (1.3) and

(1.4) with respect to θ, we obtain

d2x

dθ2
= x′′(θ) =

α−θ
[
(π2 − s2) cos(θπ) + α2θs2 − 2πs sin(θπ)

]
√
5

(1.5)

and

d2y

dθ2
= y′′(θ) =

α−θ
[
2πs cos(θπ) + (π2 − s2) sin(θπ)

]
√
5

, (1.6)

[18], [1].

Definition 1.5. Let I ⊆ R be an open interval of R. Then, Lucas curve is defined by

l : I → R2

θ 7→ l(θ) = (x(θ), y(θ)) ,

where

x(θ) = αθ + α−θ cos(θπ) (1.7)

and

y(θ) = α−θ sin(θπ) (1.8)

including α = 1+
√
5

2 , [18].

In the interval I = (1, 5), the graph of Lucas curve can be seen in Figure 2.

Figure 2. Lucas curve
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By taking derivative of the equations (1.7) and (1.8) with respect to θ, we obtain that

dx

dθ
= x′(θ) = α−θ

[
sα2θ − s cos(θπ)− π sin(θπ)

]
(1.9)

and

dy

dθ
= y′(θ) = α−θ

[
π cos(θπ)− s sin(θπ)

]
, (1.10)

where α = 1+
√
5

2 and s = log
(
1+

√
5

2

)
. After taking derivative of the equations (1.9) and

(1.10) with respect to θ, we obtain

d2x

dθ2
= x′′(θ) = α−θ

[
α2θs2 + (s2 − π2) cos(θπ) + 2πs sin(θπ)

]
(1.11)

and

d2y

dθ2
= y′′(θ) = α−θ

[
− 2πs cos(θπ) + (s2 − π2) sin(θπ)

]
, (1.12)

[18], [1].

2. The Special Curves of Fibonacci Curve

In this section, we will present the special plane curves of Fibonacci curve by using equa-

tions (1.3), (1.4), (1.5) and (1.6).

2.1. The Contrapedal Curve of Fibonacci Curve. The parametric equation of con-

trapedal curve 1 of Fibonacci curve f(θ) with respect to point P = (p1, p2) on the plane is

that

Cpf (θ) = (A(θ), B(θ)), (2.13)

where

A(θ) = p1 +
α−θ

(
sα2θ + s cos(πθ) + π sin(πθ)

) (√
5s

(
α4θ − 1

)
− 5sp1α

3θ + αθvθ
)

5 (s2 (α4θ + 1) + 2sα2θ(π sin(πθ) + s cos(πθ)) + π2)

and

B(θ) = p2 −
α−θ(π cos(πθ)− s sin(πθ))

(√
5s

(
α4θ − 1

)
− 5sp1α

3θ + αθvθ
)

5 (s2 (α4θ + 1) + 2sα2θ(π sin(πθ) + s cos(πθ)) + π2)

including

vθ =
(
(
√
5παθ − 5sp2 − 5πp1) sin(θπ) + 5(πp2 − sp1) cos(θπ)

)
.

In Figure 3, Fibonacci curve which is represented by blue curve and the contrapedal curves

Cpf (θ) of Fibonacci curve f(θ) with respect to points (0, 6), (3, 4) (2, 2), and (−1,−2) is

1Let α(t) = (x(t), y(t)) be a regular plane curve and P be a fixed point on R2. The locus of bases of

perpendicular lines from P = (p1, p2) to a variable normal line to α is contrapedal curve and the equation

of contrapedal curve of α is that Cpα(t) = (f(t), g(t)) where f(t) = p1 + (x(t)−p1)x
′(t)+(y(t)−p2)y

′(t)
x′(t)2+y′(t)2 x′(t) and

g(t) = p2 +
(x(t)−p1)x

′(t)+(y(t)−p2)y
′(t)

x′(t)2+y′(t)2 y′(t), [7].
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plotted, from top to down respectively. As seen in the figure, in the interval where Fibonacci

curve is injective, whether the contrapedal curve of Fibonacci curve is injective or not depends

on given point P .

Figure 3. Fibonacci curve and its contrapedal curves

2.2. The Radial Curve of Fibonacci Curve. The parametric equation of radial curve2

of Fibonacci curve f(θ) with respect to point P = (p1, p2) on the plane is that

Rf (θ) = (R1(θ), R2(θ)) , (2.14)

where

R1(θ) = p1 +
α−θ(π cos(θπ)− s sin(θπ))

(
s2

(
α4θ + 1

)
+ 2sα2θzθ + π2

)
√
5 (sα2θ ((π2 − 2s2) sin(θπ) + 3πs cos(θπ)) + π (s2 + π2))

and

R2(θ) = p2 +
α−θ

(
sα2θ + s cos(θπ) + π sin(θπ)

) (
s2

(
α4θ + 1

)
+ 2sα2θzθ + π2

)
√
5 (sα2θ ((π2 − 2s2) sin(θπ) + 3πs cos(θπ)) + π (s2 + π2))

including

zθ = π sin(θπ) + s cos(θπ).

From the equation (2.14), we can see that point P plays a role in just the translation of the

created shape. In Figure 4, Fibonacci curve which is represented by blue curve and, from

2Let α(t) = (x(t), y(t)) be a regular plane curve on R2. Suppose that lines are drawn from a fixed

point P = (p1, p2) ∈ R2 such that these lines are equal and parallel to the radii of curvature of α(t). The

locus of the end points is radial curve and the equation of radial curve is that Rα(t) = (f(t), g(t)) where

f(t) = p1 −
y′(t)((x′(t))2+(y′(t))2)
x′(t)y′′(t)−x′′(t)y′(t) and g(t) = p2 +

x′(t)((x′(t))2+(y′(t))2)
x′(t)y′′(t)−x′′(t)y′(t) , [11].
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left to right respectively, the Rf (θ) radial curves with respect to (3, 1) and (6, 1) points are

plotted by restricting x−axis to (−1, 8) interval and y−axis to (−1, 3) interval. The figure

indicates that the radial curve of Fibonacci curve is not injective.

Figure 4. Fibonacci curve and its radial curves

2.3. The Inverse Curve of Fibonacci Curve. The parametric equation of inverse curve3

of Fibonacci curve f(θ) with respect to point R = (r1, r2) and value k is that

Inf (θ) = (I1(θ), I2(θ)) , (2.15)

where

I1(θ) = r1 + k

√
5
(
αθ − α−θ cos(θπ)−

√
5r1

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2
and

I2(θ) = r2 − k

√
5
(
α−θ sin(θπ) +

√
5r2

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 .
The equation (2.15) demonstrates that if the point R is kept constant, the value k > 0 has

a role in changing the size of the shape. The more we increase the value k, the more the

figure enlarges by preserving its basic form. In contrast, the more we decrease the value k,

the more the size of the shape is dwindled by preserving its basic form. That is, the value k

is the radial ratio. In Figure 5, Fibonacci curve which is represented by blue curve and its

inverse curves Inf (θ) with k = 5 and k = 9 with respect to the point (2,−1) are plotted.

3Let α(t) = (x(t), y(t)) be a regular plane curve and R = (r1, r2) be a fixed point on R2. Suppose that a line

L is drawn through R by intersecting α at P , and let Q be a point on L so that |RP |.|RQ| = k, a constant.

Then, P and Q are inverse points, and the locus of Q is an inverse of α with respect to R. k may be

negative, in which case P and Q lie on opposite sides of R. The parametric equation of inverse curve of α is

that Inα(t) = (f(t), g(t)) where f(t) = r1 + k x(t)−r1
(x(t)−r1)2+(y(t)−r2)2

and g(t) = r2 + k y(t)−r2
(x(t)−r1)2+(y(t)−r2)2

, [11].



10 E. ERGÜL AND S. YÜCE

(a) when R = (2,−1) and k = 5 (b) when R = (2,−1) and k = 9

Figure 5. Fibonacci curve and its inverse curves

Moreover, if one keeps the point R constant and gets the negative of the value k, then the

shape is rotated around the point R at a rotation of 180◦.

Firstly, we start to make R become the origin. So,

(I ′1, I
′
2) = (I1, I2)− (r1, r2) = (I1 − r1, I2 − r2) then we get that

I ′1 = k

√
5
(
αθ − α−θ cos(θπ)−

√
5r1

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 ,
I ′2 = −k

√
5
(
α−θ sin(θπ) +

√
5r2

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 .
We know that to rotate a point 180◦ counterclockwise about the origin, we need to multiply

the x− and y−coordinates by −1 i.e. (x, y) → (−x,−y). Therefore, we get that

I ′′1 = −k

√
5
(
αθ − α−θ cos(θπ)−

√
5r1

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 ,
I ′′2 = k

√
5
(
α−θ sin(θπ) +

√
5r2

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 .
Finally, we make the point R center again. So,

(I ′′′1 , I ′′′2 ) = (I ′′1 , I
′′
2 ) + (r1, r2) = (I ′1 + r1, I

′
2 + r2) then we get that

I ′′′1 = r1 − k

√
5
(
αθ − α−θ cos(θπ)−

√
5r1

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 ,
I ′′′2 = r2 + k

√
5
(
α−θ sin(θπ) +

√
5r2

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 .
(2.16)
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In addition, if we write −k instead of k in the equation (2.15), then we obtain that

I1(θ) = r1 − k

√
5
(
αθ − α−θ cos(θπ)−

√
5r1

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 ,
I2(θ) = r2 + k

√
5
(
α−θ sin(θπ) +

√
5r2

)(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 .
(2.17)

Consequently, from the equations (2.16) and (2.17), we see that the statement is true.

In Figure 6, Fibonacci curve which is represented by blue curve and its inverse curves

Inf (θ) with k = 5 and k = −5 with respect to the point (2,−1) are plotted.

(a) when R = (2,−1) and k = 5 (b) when R = (2,−1) and k = −5

Figure 6. Fibonacci curve and its inverse curve with negative value k

2.4. The Conchoid Curve of Fibonacci Curve. The parametric equation of conchoid

curve4 of Fibonacci curve f(θ) with respect to point R = (r1, r2) and value k is that

Cf (θ) = (c1(θ), c2(θ)) , (2.18)

where

c1(θ) =
αθ − α−θ cos(θπ)√

5
± k

(
αθ − α−θ cos(θπ)−

√
5r1

)√(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2
4Let α(t) = (x(t), y(t)) be a regular plane curve and R = (r1, r2) be fixed point on R2. Suppose that

a line L is drawn through R by intersecting α at Q. The locus of points P1 and P2 on L such that

|P1Q| = |QP2| = k, a constant is the conchoid curve of α with respect to R = (r1, r2). The paramet-

ric equation of conchoid curve of α is Cα(t) = (f(t), g(t)) where f(t) = x(t) ± k x(t)−r1√
(x(t)−r1)2+(y(t)−r2)2

and

g(t) = y(t)± k y(t)−r2√
(x(t)−r1)2+(y(t)−r2)2

, [11].
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and

c2(θ) =
−α−θ sin(θπ)√

5
∓ k

(
α−θ sin(θπ) +

√
5r2

)√(
αθ − α−θ cos(θπ)−

√
5r1

)2
+
(
α−θ sin(θπ) +

√
5r2

)2 .

In Figure 7, Fibonacci curve and its conchoid curves Cf (θ) with respect to different values k

and the point (5, 3) are plotted. The blue, purple and pink curves in the figure, respectively,

represent Fibonacci curve, the locus of P1 and the locus of P2. As it is seen in this figure, if

we fix the point R, whether its conchoid curve is injective or not depends on the value k in

the interval which Fibonacci curve is injective.

(a) when R = (5, 3) and k = 1 (b) when R = (5, 3) and k = 3

(c) when R = (5, 3) and k = 4 (d) when R = (5, 3) and k = 5

Figure 7. Fibonacci curve and its conchoid curves
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2.5. The Strophoid Curve of Fibonacci Curve. The parametric equation of strophoid

curve5 of Fibonacci curve f(θ) with respect to points R = (r1, r2) and A = (a1, a2) is that

Sf (θ) = (s1(θ), s2(θ)) , (2.19)

where

s1(θ) =
αθ − α−θ cos(θπ)√

5
±

(
αθ − α−θ cos(θπ)−

√
5r1

)
ωθ√(

αθ − α−θ cos(θπ)−
√
5r1

)2
+
(
−α−θ sin(θπ)−

√
5r2

)2
and

s2(θ) = −α−θ sin(θπ)√
5

±
(
−α−θ sin(θπ)−

√
5r2

)
ωθ√(

αθ − α−θ cos(θπ)−
√
5r1

)2
+
(
−α−θ sin(θπ)−

√
5r2

)2
including

ωθ =
1√
5

√(√
5a1 − αθ + α−θ cos(θπ)

)2
+
(√

5a2 + α−θ sin(θπ)
)2

.

In Figure 8, Fibonacci curve and its strophoid curves Sf (θ) with respect to R = (4, 1) and

A = (−1,−1) are plotted. The blue, purple and pink curves, respectively, in the figure

represent Fibonacci curve, the locus of P1 and the locus of P2.

Figure 8. Fibonacci curve and its strophoid curve when R = (4, 1) and

A = (−1,−1)

5Let α(t) = (x(t), y(t)) be a regular plane curve and R = (r1, r2) and A = (a1, a2) be two fixed

points on R2. Here, the point R is called the pole point. The locus of points P1 and P2 on a line L

through R and intersecting α at a point Q such that |P2Q| = |QP1| = |QA| is the strophoid curve of α

with respect to R and A. The parametric equation of strophoid curve of α is Sα(t) = (f(t), g(t)) where

f(t) = x(t)± 1√
1+m2

[
(a1 − x(t))2 + (a2 − y(t))2

]1/2
and g(t) = y(t)± m√

1+m2

[
(a1 − x(t))2 + (a2 − y(t))2

]1/2
included m = y(t)−r2

x(t)−r1
, [11].
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3. The Special Curves of Lucas Curves

In this section, we will find the equations of special plane curves of Lucas curve by using

equations (1.9), (1.10), (1.11) and (1.12) and give their graphs.

3.1. The Contrapedal Curve of Lucas Curve. The parametric equation of contrapedal

curve of Lucas curve l(θ) with respect to point P = (p1, p2) on the plane is that

Cpl(θ) = (A(θ), B(θ)) , (3.20)

where

A(θ) = p1 −
α−θ

(
sα2θ − s cos(θπ)− π sin(θπ)

) (
s
(
1− α4θ + p1α

3θ
)
+ αθvθ

)
s2 (α4θ + 1) + π2 − 2sα2θ(π sin(θπ) + s cos(θπ))

and

B(θ) = p2 −
α−θ(π cos(θπ)− s sin(θπ))

(
s
(
1− α4θ + p1α

3θ
)
+ αθvθ

)
s2 (α4θ + 1) + π2 − 2sα2θ(π sin(θπ) + s cos(θπ))

including

vθ = παθ sin(θπ) + (πp2 − sp1) cos(θπ)− (πp1 + sp2) sin(θπ).

In Figure 9, Lucas curve which is represented by blue curve and its contrapedal curves Cpl(θ)

with respect to (4, 3) and (1,−3) are plotted, from top to down respectively. As it can be

seen in the figure, whether the contrapedal curve of Lucas curve is injective depends on point

P in the interval where Lucas curve is injective.

Figure 9. Lucas curve and its contrapedal curves
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3.2. The Radial Curve of Lucas Curve. The parametric equation of radial curve of

Lucas curve l(θ) with respect to point P = (p1, p2) is that

Rl(θ) = (R1(θ), R2(θ)) , (3.21)

where

R1(θ) = p1 −
α−θ(π cos(θπ)− s sin(θπ))

(
s2

(
α4θ + 1

)
− 2sα2θzθ + π2

)
π (s2 + π2)− sα2θ ((π2 − 2s2) sin(θπ) + 3πs cos(θπ))

and

R2(θ) = p2 +
α−θ

(
sα2θ − s cos(θπ)− π sin(θπ)

) (
s2

(
α4θ + 1

)
− 2sα2θzθ + π2

)
π(s2 + π2)− sα2θ (3πs cos(θπ) + (π2 − 2s2) sin(θπ))

including

zθ = π sin(θπ) + s cos(θπ).

It can be understood from the equation (3.21) that point P plays a role in the translation

of the shape created by radial curve. In Figure 10, Lucas curve which is represented by blue

curve and its radial curves Rl(θ), from left to right respectively, at (−1, 2) and (6, 2) points

have been plotted by restricting x−axis to (−5, 11) interval and y−axis to (−10, 10) interval.

The figure indicates that the radial curve of Lucas curve is not injective.

Figure 10. Lucas curve and its radial curves
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3.3. The Inverse Curve of Lucas Curve. The parametric equation of inverse curve of

Lucas curve l(θ) with respect to point R = (r1, r2) and value k is that

Inl(θ) = (I1(θ), I2(θ)) , (3.22)

where

I1(θ) = r1 + k
αθ + α−θ cos(θπ)− r1

(αθ + α−θ cos(θπ)− r1)
2
+ (α−θ sin(θπ)− r2)

2

and

I2(θ) = r2 + k
α−θ sin(θπ)− r2

(αθ + α−θ cos(θπ)− r1)
2
+ (α−θ sin(θπ)− r2)

2 .

Results obtained by investigating the special cases of value k for the inverse curve of Fibonacci

curve are also valid for the inverse curve of Lucas curve. In Figure 11, Lucas curve which is

represented by blue curve and its inverse curves Inl(θ) for k = −5, k = 5, k = −9, and k = 9

with respect to the point (4,−1) are plotted.

(a) when R = (4,−1) and k = 5 (b) when R = (4,−1) and k = 9

(c) when R = (4,−1) and k = −5 (d) when R = (4,−1) and k = −9

Figure 11. Lucas curve and its inverse curves
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3.4. The Conchoid Curve of Lucas Curve. The parametric equation of conchoid curve

of Lucas curve l(θ) with respect to point R = (r1, r2) and value k is that

Cl(θ) = (c1(θ), c2(θ)) , (3.23)

where

c1(θ) = αθ + α−θ cos(θπ)± k
αθ + α−θ cos(θπ)− r1√

(αθ + α−θ cos(θπ)− r1)
2
+ (α−θ sin(θπ)− r2)

2

and

c2(θ) = α−θ sin(θπ)± k
α−θ sin(θπ)− r2√

(αθ + α−θ cos(θπ)− r1)
2
+ (α−θ sin(θπ)− r2)

2
.

In Figure 12, Lucas curve and its conchoid curves Cl(θ) with respect to different values k

and the point (4, 2) are plotted. The blue, purple and pink curves represent Lucas curve,

the locus of P1 and the locus of P2, respectively, in the figure. As it is seen in this figure,

whether its conchoid curve is injective depends on value k in the interval where Lucas curve

is injective.

(a) when R = (4, 2) and k = 1 (b) when R = (4, 2) and k = 1.75

(c) when R = (4, 2) and k = 3 (d) when R = (4, 2) and k = 4

Figure 12. Lucas curve and its conchoid curves
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3.5. The Strophoid Curve of Lucas Curve. The parametric equation of strophoid curve

of Lucas curve l(θ) with respect to points R = (r1, r2) and A = (a1, a2) is that

Sl(θ) = (s1(θ), s2(θ)) , (3.24)

where

s1(θ) = αθ + α−θ cos(θπ)±
(
αθ + α−θ cos(θπ)− r1

)
ωθ√

(αθ + α−θ cos(θπ)− r1)
2
+ (α−θ sin(θπ)− r2)

2

and

s2(θ) = α−θ sin(θπ)±
(
α−θ sin(θπ)− r2

)
ωθ√

(αθ + α−θ cos(θπ)− r1)
2
+ (α−θ sin(θπ)− r2)

2

including

ωθ =

√
(a1 − αθ − α−θ cos(θπ))

2
+ (a2 − α−θ sin(θπ))

2
.

In Figure 13, Lucas curve and its strophoid curves Sl(θ) with respect to different points R

and A are plotted. The blue, purple and red curves represent Lucas curve, the locus of P1 and

the locus of P2, respectively, in the figure. As it is seen in this figure, whether its strophoid

curve has a critical point depends on A and R in the interval where Lucas curve has not any

critical point.

(a) when R = (4, 2) and A = (−1, 3)

(b) when R = (1, 0) and A = (−3,−4)

Figure 13. Lucas curve and its strophoid curves
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4. Conclusion

In this study, firstly the notions of contrapedal, radial, inverse, conchoid and strophoid

curves of the Fibonacci and Lucas curves have been investigated. Afterwards, their graphs

which have been plotted by using Mathematica are examined in the interval I = (2, 6) for

Fibonacci curve and in the interval I = (1, 5) for Lucas curve.

We have obtained some results from the notions and figures which is acquired.

• As illustrated in Figure 3 and Figure 9, if their contrapedal curves are injective or

not depends on given point P in the intervals where Fibonacci and Lucas curves are

injective.

• From equations (2.14) and (3.21), it is clear that the point P has a role in the

translation of the figure which is created. Figure 4 and Figure 10 illustrate that their

radial curves are not injective.

• The equations (2.15) and (3.22) reveals that if one fixes the point R, the value k > 0

has a role in changing the size of inverse curves which belongs to Fibonacci and Lucas

curves. As the value k increases, the size of the shape enlarges by preserving the main

form. Conversely, as the value k decreases, the size becomes smaller by preserving

the main form. Moreover, if one keeps the point R constant and gets the negative of

the value k, then the shape is rotated around the point R at a rotation of 180◦.

• From Figure 7 and Figure 12, it can be seen that in the interval where Fibonacci and

Lucas curves are injective, if one fixes the point R, the value k is an important factor

in the injectivity of their conchoid curves.

• It can be observed from Figure 13 that in the interval where Lucas curve has not

any critical point whether its strophoid curve has at least one critical point or not

depends on the given points R and A.
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Beiträge zur Algebra und Geometrie.

[17] Sendra J. R. & Sendra, J. (2008). An algebraic analysis of conchoids to algebraic curves. Applicable

Algebra in Engineering, Communication and Computing, 19 (5), 413-428.

[18] Shannon, A. G. & Horadam, A. F. (1988). Fibonacci and Lucas Curves. Fibonacci Quarterly, 26(1), 3-13.

[19] Stakhov, A. & Rozin, B. (2005). The Golden Shofar, Chaos, Solitons & Fractals, 26(3), 677-684.

[20] Stavek, J. (2018). Kepler’s Ellipse Observed from Newton’s Evolute (1687), Horrebow’s Circle (1717),

Hamilton’s Pedal Curve (1847), and Two Contrapedal Curves (28.10.2018). Applied Physics Research.,

10 (90), 90-101.
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1. Introduction

In Riemannian (as well as semi-Riemannian) manifolds, different geometric structures

such as almost complex structures, almost product structures, almost contact structures,

almost paracontact structures etc. allow rich differential and geometric features to emerge

while investigating geometry of submanifolds.

A solution of the equation x2 − x − 1 = 0, the number ϕ = 1+
√
5

2 = 1.618..., is known

as the Golden ratio and it is also considered to be the order relation that gives the best

harmony and proportions in art and architecture since ancient times. As a generalization of

the Golden ratio, Spinadel introduced metallic means family or metallic proportions in [24].
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Members of metallic means family, namely (p, q) metallic numbers, are the positive solutions

of the equation x2 − px− q = 0 and denoted by

σp,q =
p+

√
p2 + 4q

2
, (1.1)

where p and q are positive integer numbers. The well-known members of the metallic means

family are the Golden mean, the Silver mean, the Bronze mean; the Copper mean etc. These

means constitute a bridge between mathematics, physics and art.

In recent years, inspired by the Golden mean and the metallic mean, the Golden struc-

ture and the metallic structure on Riemannian manifolds were introduced in [10] and [18],

respectively. Golden Riemannian manifolds, considered an important subclass of metallic

Riemannian manifolds and their submanifolds, have extensively been studied by many ge-

ometers (see [13, 11, 15, 16, 17]).

In 2006, by a different approach, Kalia [21] introduced a new Bronze mean and studied

Bronze Fibonacci and Lucas numbers. The author revealed the relationship between the

convergents of continued fractions of the power of Bronze means and the Bronze Fibonacci

and Lucas numbers. Note that, unlike the Bronze mean contained by the metallic means

family defined in [24], that new Bronze mean given by Kalia [21] can not be expressed with

σp,q, for positive integers p and q.

Considering the differentiable structure that may occur on a semi-Riemannian manifold

depending on the Bronze mean given by [21] and the study on a Riemannian manifold with

the Golden structure [10], a new type of manifold equipped with the Bronze structure was

introduced by Şahin [26] and the author named it an almost poly-Norden manifold. After

then, Perktaş [28] studied submanifolds of almost poly-Norden Riemannian manifolds and

examined fundamental geometric features of such submanifolds with the induced structure

provided by the almost poly-Norden structure of the ambient manifold.

Slant submanifolds were first defined by Chen (see, [8], [9]) in complex manifolds. Later,

submanifolds of this type have begun to be widely studied on different manifolds. For slant

submanifolds in almost contact metric manifolds, in Sasakian manifolds, in para-Hermitian

manifolds and in almost product manifolds we refer to [2, 3, 4, 7, 6, 22, 25]. Invariant, anti-

invariant, semi-invariant, slant, semi-slant, hemi-slant and bi-slant submanifolds of a metallic

Riemannian manifold were studied in [5, 19, 20]. Some types of lightlike submanifolds of a

Golden semi-Riemannian manifold and metallic semi-Riemannian manifold were introduced

in [1, 12, 14, 23, 27].
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In the present paper, we study slant submanifolds of an almost poly-Norden Riemannian

manifold and give examples. Also we investigate conditions for the normality of the induced

structure provided by the almost poly-Norden structure of the ambient manifold.

2. Preliminaries

The Bronze mean introduced by Kalia [21] is the positive solution of x2−mx+1 = 0,which

is defined by

Bm =
m+

√
m2 − 4

2
. (2.2)

For detailed reading on the relations between Bronze Fibonacci numbers, Bronze Lucas

numbers and family of sequences given by the recurrences, we refer to [21].

Inspired by the Bronze mean given by (2.2), Şahin [26], defined a structure on a dif-

ferentiable manifold, precisely the Bronze structure. A differentiable manifold M̂ with a

(1, 1)-tensor field Φ̂ satisfying

Φ̂2 = mΦ̂− I, (2.3)

where I is the identity operator on the set of cross sections of tangent bundle TM̂ denoted

by Γ(TM̂), is called an almost poly-Norden manifold equipped with a poly-Norden structure

Φ̂. Also, an almost poly-Norden manifold (M̂, Φ̂) having a semi-Riemannian metric ĝ which

is Φ̂-compatible, i.e.,

g(Φ̂X, Φ̂Y ) = mg(Φ̂X,Y )− g(X,Y ), (2.4)

equivalent to

g(Φ̂X,Y ) = g(X, Φ̂Y ), (2.5)

for any X,Y ∈ Γ(TM̂), is called an almost poly-Norden semi-Riemannian manifold [26].

Every complex structure F̂ allows to reduce two poly-Norden structures to a semi-Riemannian

manifold given by [26]:

Φ̂1 =
m

2
I +

√
4−m2

2
F̂ , Φ̂2 =

m

2
I −

√
4−m2

2
F̂ , −2 < m < 2.

Conversely, every poly-Norden structure Φ̂ give rise to define two almost complex structures

in the followings [26]:

F̂1 = − m√
4−m2

I +
2√

4−m2
Φ̂, F̂2 =

m√
4−m2

I − 2√
4−m2

Φ̂, −2 < m < 2.

A poly-Norden semi-Riemannian manifold is an almost poly-Norden semi-Riemannian man-

ifold with a parallel poly-Norden structure Φ̂ with respect to Levi-Civita connection ∇̂ on

the manifold. The integrability of Φ̂ is defined by vanishing of the its Nijenhuis tensor field
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NΦ̂(X,Y ) := [Φ̂X, Φ̂Y ] − Φ̂[Φ̂X,Y ] − Φ̂[X, Φ̂Y ] + Φ̂2[X,Y ], for any X,Y ∈ Γ(TM̂). Note

that NΦ̂ = 0 is equivalent to ∇̂Φ̂ = 0, where ∇̂ is the Levi-Civita connection on M̂ . It was

shown that in case of m is being zero every Norden manifold becomes an almost poly-Norden

manifold [26].

Throughout the paper we will consider m ̸= 0.

3. Submanifolds of almost poly-Norden Riemannian manifolds

Let (M̂, Φ̂, g) be an (n + k)-dimensional almost poly-Norden Riemannian manifold and

M be an n-dimensional isometrically immersed submanifold of M̂ . For any X ∈ Γ(TM) and

U ∈ Γ(TM⊥), we put

Φ̂X = fX + wX, (3.6)

Φ̂U = BU + CU, (3.7)

where fX (resp., wX) is the tangential (resp., normal) part of Φ̂X and BU (resp., CU) is

the tangential (resp., normal) part of Φ̂U.

From (2.5) and (3.7) one can easily see that

g(fX, Y ) = g(X, fY ), ∀X,Y ∈ Γ(TM), (3.8)

g(CU, V ) = g(U,CV ), ∀U, V ∈ Γ(TM⊥). (3.9)

Also, the maps w and B are related by g(wX,U) = g(X,BU), for any X ∈ Γ(TM) and

U ∈ Γ(TM⊥).

Denoting by ∇̂ and ∇, the Levi-Civita connections on M and M̂ , respectively, then Gauss

and Weingarten formulas are given as follows:

∇̂X Y = ∇X Y +

k∑
β=1

hβ(X,Y )Nβ, (3.10)

∇̂X Nβ = −ANβ
X +

k∑
γ=1

σβγ(X)Nγ , (3.11)

for any X,Y ∈ Γ(TM) and an orthonormal basis {N1, ..., Nk} of TM⊥, where β, γ ∈

{1, ..., k}. Here, h(X,Y ) =
k∑

β=1

hβ(X,Y )Nβ and ANβ
is the shape operator in the direc-

tion of Nβ defined by g(ANβ
X,Y ) = hβ(X,Y ). Also, σβγ (1 ≤ β, γ ≤ k) denotes the

1-forms on the submanifold M which satisfy ∇̂⊥
X Nβ =

k∑
γ=1

σβγ(X)Nγ . Note that by taking

the covariant derivative of g(Nβ, Nγ) = δβγ on M , one gets σβγ = −σγβ.
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For any X ∈ Γ(TM), Φ̂X and Φ̂Nβ (1 ≤ β ≤ k) can be written respectively in the follow-

ing forms:

Φ̂X = fX +
k∑

β=1

υβ(X)Nβ, (3.12)

Φ̂Nβ = ζβ +

k∑
γ=1

θβγ Nγ , (3.13)

where f is a tensor field of type (1, 1) on M which transforms tangent vector field X on M

to the tangential component of Φ̂X, υβ are 1-forms and θβγ are differentiable real valued

functions on M providing a k × k matrix denoted by (θβγ)k×k.

Since g(Φ̂X,Nβ) = g(X, Φ̂Nβ) and g(Φ̂Nβ, Nγ) = g(Nβ, Φ̂Nγ), by using (2.4) and (3.8)

we have

Lemma 3.1. [28] In a submanifold M of an almost poly-Norden Riemannian manifold

(M̂, Φ̂, g), we have

υβ(X) = g(Φ̂X,Nβ) = g(X, ζβ), (3.14)

g(fX, fY ) = mg(X, fY )− g(X,Y ) +

k∑
β,γ=1

υβ(X)υγ(Y ), (3.15)

θβγ = θγβ, (3.16)

for any X,Y ∈ Γ(TM) and 1 ≤ β, γ ≤ k.

Proposition 3.1. [28] Let M be an n-dimensional isometrically immersed submanifold of an

(n+k)-dimensional almost poly-Norden Riemannian manifold (M̂, Φ̂, g). Then the structure

(f, g, υβ, ζβ, (θβγ)k×k) on M induced by the almost-poly Norden structure of M̂ satisfies

(∇X f)Y =
k∑

β=1

{
g(wY,Nβ)ANβ

X + hβ(X,Y )BNβ

}
, (3.17)

f2X = mfX −X −
k∑

β=1

υβ(X)ζβ, (3.18)

υβ(fX) = mυβ(X)−
k∑

γ=1

θβγυγ(X), (3.19)

υγ(ζβ) = mθβγ − δβγ −
k∑

λ=1

θβλθλγ , (3.20)

f ζβ = mζβ −
k∑

γ=1

θβγζγ , (3.21)
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for any X ∈ Γ(TM). Moreover, in case of M̂ is being a poly-Norden semi-Riemannian

manifold, we have

f ANβ
X +∇X ζβ −

k∑
γ=1

θβγANγ X −
k∑

γ=1

σβγ(X)ζγ = 0. (3.22)

4. Slant Submanifolds

Let M be a submanifold of an almost poly-Norden Riemannian manifold (M̂, Φ̂, g). By

using the Cauchy-Schwartz inequality, namely,

g(Φ̂X, fX) ≤
∥∥∥Φ̂X∥∥∥ ∥fX∥ , ∀X ∈ Γ(TM),

we can state that there exists a function θ : TxM →
[
0, π2

]
satisfying∣∣∣g(Φ̂X, fX)

∣∣∣ = cos θ(X)
∥∥∥Φ̂X∥∥∥ ∥fX∥ ,

for any X ∈ Γ(TM). Here θ(X) is called the Wirtinger angle of X.

Now we define the slant submanifolds of an almost poly-Norden Riemannian manifold

similar to the definition given in [8]:

Definition 4.1. Let M be a submanifold of an almost poly-Norden Riemannian manifold

(M̂, Φ̂, g). If for any X ∈ Γ(TM) the angle θ(X) between Φ̂X and TxM does not depend on

Xx ∈ TxM , then M is called a slant submanifold of (M̂, Φ̂, g).

In this case, θ is called the slant angle of M . Furthermore, we have

cos θ =
g(Φ̂X, fX)∥∥∥Φ̂X∥∥∥ ∥fX∥

=
∥fX∥∥∥∥Φ̂X∥∥∥ , (4.23)

for any X ∈ Γ(TM) and Φ̂X ̸= 0. The invariant and anti-invariant submanifolds of an

almost poly-Norden Riemannian manifold are slant submanifolds with the slant angle θ = 0

and θ = π
2 , respectively.

Proposition 4.1. Let M be an n-dimensional submanifold of an (n+k)-dimensional almost

poly-Norden Riemannian manifold (M̂, Φ̂, g). If M is a slant submanifold with the slant angle

θ, then we have

g(fX, fY ) = cos2 θ{mg(Φ̂X,Y )− g(X,Y )}, (4.24)

g(wX,wY ) = sin2 θ{mg(Φ̂X,Y )− g(X,Y )}, (4.25)

for any X,Y ∈ Γ(TM).
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Proof. Since M is a slant submanifold with the slant angle θ, then by putting X + Y

instead of X in (4.23) we get

cos2 θg(Φ̂X, Φ̂Y ) = g(fX, fY ). (4.26)

From (2.4) and the last equation we obtain (4.24).

On the other hand, using (3.6) we write

g(Φ̂X, Φ̂Y ) = g(fX, fY ) + g(wX,wY ),

which implies

g(wX,wY ) = (1− cos2 θ){mg(Φ̂X,Y )− g(X,Y )}

via (4.24) and (2.4). Hence we obtain (4.25).

Theorem 4.1. A submanifold M of an almost poly-Norden Riemannian manifold (M̂, Φ̂, g)

is slant if and only if there exists a constant λ ∈ [0, 1] such that

f 2 = λ (mf − I) . (4.27)

Proof. Since M is a slant submanifold, from (3.8) and (4.24) we write

g(f 2X,Y ) = g(fX, fY ) = cos2 θ{mg(Φ̂X,Y )− g(X,Y )}

= cos2 θg(mfX −X,Y ),

for any X,Y ∈ Γ(TM), which implies

f 2X = cos2 θ (mf − I) (X).

For λ = cos2 θ gives (4.27).

Conversely, assume that there exists a constant λ ∈ [0, 1] which satisfies (4.27). Then, for

any X ∈ Γ(TM) with fX ̸= 0, we have

cos θ =
g(Φ̂X, fX)∥∥∥Φ̂X∥∥∥ ∥fX∥

=
g(X, f2X)∥∥∥Φ̂X∥∥∥ ∥fX∥

= λ
mg(Φ̂X,X)− g(X,X)∥∥∥Φ̂X∥∥∥ ∥fX∥

.

By using (2.4) in the last equation we get cos θ = λ
∥Φ̂X∥
∥fX∥ , which shows that

cos2 θ = λ = constant and hence, M is a slant submanifold. This completes the proof.
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Proposition 4.2. If M is a slant submanifold with the slant angle θ of an (n+k)-dimensional

almost poly-Norden Riemannian manifold (M̂, Φ̂, g), then we have

(∇Xf 2)Y = m cos2 θ(∇Xf)Y, (4.28)

for any X,Y ∈ Γ(TM).

Proof. From (4.27), for all X,Y ∈ Γ(TM), we write

∇Xf 2Y = cos2 θ(m∇XfY −∇XY )

and

f 2(∇XY ) = cos2 θ(mf ∇XY −∇XY ),

which completes the proof.

Hence, from (3.17) and (4.28) we give

Proposition 4.3. Let M be an n-dimensional slant submanifold of an (n+ k)-dimensional

poly-Norden Riemannian manifold (M̂, Φ̂, g). Then, for any X,Y ∈ Γ(TM), we have

(
∇Xf 2

)
Y = m cos2 θ

k∑
β=1

{
υβ(Y )ANβ

X + hβ(X,Y )ζβ
}
.

Proposition 4.4. If M is a slant submanifold with the slant angle θ (θ ̸= π
2 ) of an (n+ k)-

dimensional poly-Norden Riemannian manifold (M̂, Φ̂, g), then we have

f 2 = cot2 θ

k∑
β=1

νβ ⊗ ζβ.

Proof. It follows from (3.18) and (4.27).

Example 4.1. Let R4 be the 4-dimensional real number space with a coordinate system

(x, y, z, t). We define

Φ̂ : R4 → R4

(x, y, z, t) → Φ̂(x, y, z, t) = (Bmx,Bmy, (m−Bm) z, (m−Bm) t) ,

where Bm = m+
√
m2−4
2 . Then (R4, Φ̂) is an almost poly-Norden manifold [26]. If we con-

sider usual scalar product ⟨., .⟩ on R4, then we see that it is Φ̂-compatible and (R4, Φ̂, ⟨., .⟩)

is an almost poly-Norden Riemannian manifold. Now assume that M is a submanifold of

(R4, Φ̂, ⟨., .⟩) defined by the immersion

Ω(u1, u2) = (u1 + u2, u1 − u2,
√
2u2,

√
2u1).
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In this case, TM is generated by

X = (1, 1, 0,
√
2), Y = (1,−1,

√
2, 0).

One can see that

Φ̂X =
(
Bm, Bm, 0,

√
2(m−Bm)

)
, Φ̂Y =

(
Bm,−Bm,

√
2(m−Bm), 0

)
,

and 〈
Φ̂X,X

〉
= 2(Bm + (m−Bm)) = 2m =

〈
Φ̂Y, Y

〉
,

∥X∥ = ∥Y ∥ = 2,
∥∥∥Φ̂X∥∥∥ =

∥∥∥Φ̂Y ∥∥∥ =
√
2 (m2 − 2),

which imply that M is a slant submanifold of
(
R4, Φ̂, ⟨., .⟩

)
with the slant angle

θ = cos−1

(
m√

2 (m2 − 2)

)
, −

√
2 < m <

√
2.

Example 4.2. Consider the almost poly-Norden structure given by

Φ̂(xi, yj , t) =
(
Bmxi, B̄myj , Bmt

)
, 1 ≤ i, j ≤ 4,

and the scalar product ⟨., .⟩ on R9. Then (R9, Φ̂, ⟨., .⟩) is an almost poly-Norden Riemannian

manifold. Now let M be a submanifold of (R9, Φ̂, ⟨., .⟩) by

Ψ(u, v, w, z) = (B̄mu cos θ, B̄mv cos θ, B̄mw cos θ, B̄mz cos θ,

Bmu sin θ,Bmv sin θ,Bmw sin θ,Bmz sin θ, 0).

In this case the tangent bundle of the submanifold is generated by

E1 = (B̄m cos θ, 0, 0, 0, Bm sin θ, 0, 0, 0, 0),

E2 = (0, B̄m cos θ, 0, 0, 0, Bm sin θ, 0, 0, 0),

E3 = (0, 0, B̄m cos θ, 0, 0, 0, Bm sin θ, 0, 0),

E4 = (0, 0, 0, B̄m cos θ, 0, 0, 0, Bm sin θ, 0).

Then we calculate

Φ̂E1 = (cos θ, 0, 0, 0, sin θ, 0, 0, 0, 0),

Φ̂E2 = (0, cos θ, 0, 0, 0, sin θ, 0, 0, 0),

Φ̂E3 = (0, 0, cos θ, 0, 0, 0, sin θ, 0, 0),

Φ̂E4 = (0, 0, 0, cos θ, 0, 0, 0, sin θ, 0).
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and 〈
Φ̂Ek, Ek

〉
= B̄m cos2 θ +Bm sin2 θ,

∥Ek∥ =

√
B̄2

m cos2 θ +B2
m sin2 θ,∥∥∥Φ̂Ek

∥∥∥ = 1,

where 1 ≤ k ≤ 4, which imply that〈
Φ̂Ek, Ek

〉
∥∥∥Φ̂Ek

∥∥∥ ∥Ek∥
=

B̄m cos2 θ +Bm sin2 θ√
B̄2

m cos2 θ +B2
m sin2 θ

.

Hence M is a 4-dimensional slant submanifold of (R9, Φ̂, ⟨., .⟩) with the slant angle t given

by

cos t =
B̄m cos2 θ +Bm sin2 θ√
B̄2

m cos2 θ +B2
m sin2 θ

.

5. Nijenhuis Tensor Field and Normality of the Structure

Let M be an n-dimensional isometrically immersed submanifold of an (n+k)-dimensional

almost poly-Norden Riemannian manifold (M̂, Φ̂, ĝ). We consider the structure

Π = (f, g, υβ, ζβ, (θβγ)k×k)

on M induced by the almost poly-Norden structure of M̂ which satisfies the properties given

by Proposition 3.1.

Definition 5.1. Let M be an n-dimensional submanifold of an (n+ k)-dimensional almost

poly-Norden Riemannian manifold (M̂, Φ̂, g). The structure Π is called normal if the Nijen-

huis torsion tensor field of f satisfies

Nf = 2

k∑
β=1

dυβ ⊗ ζβ.

Lemma 5.1. If M is an n-dimensional submanifold of an (n+ k)-dimensional poly-Norden

Riemannian manifold (M̂, Φ̂, g) and Π = (f, g, υβ, ζβ, (θβγ)k×k) is the induced structure on

M , then we have

Nf (X,Y ) =
k∑

β=1

{g(X, ζβ)BβY − g(Y, ζβ)BβX − g(BβX,Y )ζβ} , (5.29)



32 V. AYHAN AND S. YÜKSEL PERKTAŞ

2dυβ(X,Y ) = −g(BβX,Y ) +

k∑
γ=1

{σβγ(X)g(Y, ζγ)− σβγ(Y )g(X, ζγ)} , (5.30)

where Aβ = ANβ
and Bβ = fAβ −Aβf , 1 ≤ β ≤ k.

Proof. Since the Nijenhuis torsion tensor field of f is given by

Nf (X,Y ) = (∇fXf)Y − (∇fY f)X − f [(∇Xf)Y − (∇Y f)X] ,

then by using (3.17) we have

Nf (X,Y ) =
k∑

β=1

 g(wY,Nβ)ANβ
fX + g(ANβ

fX, Y )ζβ − g(wX,Nβ)ANβ
fY

−g(X,ANβ
fY )ζβ − fg(wY,Nβ)ANβ

X + fg(wX,Nβ)ANβ
Y

 ,

which implies

Nf (X,Y ) =

k∑
β=1

 g(ANβ
fX − fANβ

X,Y )ζβ

−g(X, ζβ)(ANβ
f − fANβ

)Y + g(Y, ζβ)(ANβ
f − fANβ

)X

 ,

and we obtain (5.29).

From the definition of dυβ, it is well-known that

2dυβ(X,Y ) = g(∇Xζβ, Y )− g(X,∇Y ζβ),

for any X,Y ∈ Γ(TM). By using (3.22) we get

2dυβ(X,Y ) = −g(BβX,Y )

+
k∑

γ=1

{
g(ANγX,Y )− g(X,ANγY )

}
θβγ

+
k∑

γ=1

{g(Y, ζγ)σβγ(X)− g(X, ζγ)σβγ(Y )} ,

which gives (5.30).

From (5.29) and (5.30), we obtain

Theorem 5.1. Let M be an n-dimensional submanifold of an (n + k)-dimensional poly-

Norden Riemannian manifold (M̂, Φ̂, g) with the induced structure Π = (f, g, υβ, ζβ, (θβγ)k×k).

Then we have

Nf (X,Y )− 2

k∑
β=1

dυβ(X,Y )ζβ =

k∑
β=1

{g(X, ζβ)BβY − g(Y, ζβ)BβX}

−
k∑

β=1

k∑
γ=1

{g(Y, ζγ)σβγ(X)

−g(X, ζγ)σβγ(Y )ζβ}, (5.31)
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for any X,Y ∈ Γ(TM).

Since σβγ are the components of the normal connection ∇̂⊥ and Bβ = fAβ − Aβf , from

(5.31) we have

Corollary 5.1. Let M be an n-dimensional submanifold of an (n + k)-dimensional poly-

Norden Riemannian manifold (M̂, Φ̂, g). Then the induced structure Π = (f, g, υβ, ζβ, (θβγ)k×k)

on M is normal provided that the tensor field f commutes with the Weingarten operator Aβ,

for all β ∈ {1, ..., k} and the normal connection ∇̂⊥ identically vanishes on the normal bundle.

Lemma 5.2. Let M be a non-invariant submanifold of codimension k ≥ 1 in a poly-Norden

Riemannian manifold (M̂, Φ̂, g). If the normal connection ∇̂⊥ vanishes on the normal bundle,

then the vector fields ζ1, ..., ζk are linearly independent.

Proof. From (3.14) and (3.20) we write

υγ(ζβ) = mθ
βγ

− δ
βγ

−
k∑

λ=1

θβλθλγ = g (ζγ , ζβ) .

Assume that
k∑

i=1
ciζi = 0, for some real numbers c1, ..., ck. Then we have

0 =

k∑
i=1

cig(ζi, ζγ), γ ∈ {1, ..., k},

which implies a linear equation system defined by

k∑
i=1

ciΥij = 0, (5.32)

for any index j ∈ {1, ..., k}. Here, Υii = mθii − 1 −
k∑

λ=1

θ 2
iλ and Υij = mθij −

k∑
λ=1

θiλθλj , for

i, j ∈ {1, ..., k} and i ̸= j. The determinant of the coefficient matrix of the linear system

(5.32) is the determinant of the matrix given by

P = mΘ− Ik −Θ2, Θ =
(
θ
βγ

)
k×k

.

In case of M is being a non-invariant submanifold with respect to Φ̂, the determinant of

P cannot be zero which implies that the linear equation system (5.32) has only the trivial

solution. This completes the proof.

Theorem 5.2. Let M be a non-invariant submanifold of codimension k ≥ 1 in a poly-Norden

Riemannian manifold (M̂, Φ̂, g) with vanishing normal connection ∇̂⊥ on the normal bundle.
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Then the induced structure Π = (f, g, υβ, ζβ, (θβγ)k×k) on M is normal if and only if the

induced (1, 1)-tensor field f commutes with the Weingarten operator Aβ, for all β ∈ {1, ..., k}.

Proof. Assume that the induced structure Π is normal. Since ∇̂⊥ = 0 (equivalently,

σβγ = 0) on the normal bundle, from (5.31) we have, for any X,Y ∈ Γ(TM):

k∑
β=1

g(X, ζβ)BβY =

k∑
β=1

g(Y, ζβ)BβX,

which implies

k∑
β=1

g(X, ζβ)g(BβY,Z) =

k∑
β=1

g(Y, ζβ)g(BβX,Z), (5.33)

for any X,Y, Z ∈ Γ(TM). Replacing Y by Z in the last equation we write

k∑
β=1

g(X, ζβ)g(BβZ, Y ) =
k∑

β=1

g(Z, ζβ)g(BβX,Y ). (5.34)

By summing the last two equations side by side and using the skew-symmetry property of

Bβ, we obtain

k∑
β=1

{g(BβX,Z)ζβ + g(Z, ζβ)BβX} = 0.

Interchanging X with Z in the last equation and summing these equations we get

k∑
β=1

{g(Z, ζβ)BβX + g(X, ζβ)BβZ} = 0,

which gives

k∑
β=1

{g(Z, ζβ)g(BβX,Y ) + g(X, ζβ)g(BβZ, Y )} = 0. (5.35)

From (5.33) and (5.35), we obtain

k∑
β=1

g(Z, ζβ)g(BβX,Y ) = 0,

for any X,Y, Z ∈ Γ(TM). By considering the hypothesis and using Lemma 5.2, we can

observe that there exists a vector field W ∈ Γ(TM) such that it is orthogonal on

Span {{ζ1, ..., ζr}\ζβ} and g(W, ζβ) ̸= 0. So from the last equation we obtain that Bβ = 0,

for all β ∈ {1, ..., k}.

The proof of the converse part is obvious from (5.31).
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[28] Yüksel Perktaş, S. (2020). Submanifolds of almost poly-Norden Riemannian manifolds, Turk J Math, 44,

31 – 49.

Faculty of Arts and Sciences, Department of Mathematics, Adıyaman University, Adıyaman,

TURKEY

Faculty of Arts and Sciences, Department of Mathematics, Adıyaman University, Adıyaman,

TURKEY



International Journal of Maps in Mathematics

Volume 6, Issue 1, 2023, Pages:37-53

ISSN: 2636-7467 (Online)

www.journalmim.com

CHEN’S BASIC INEQUALITIES FOR HYPERSURFACES OF

STATISTICAL RIEMANNIAN MANIFOLDS

ESRA ERKAN ID ∗ AND MEHMET GÜLBAHAR ID

Abstract. Some basic equalities and inequalities involving the Riemannian curvature in-
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1. Introduction

With the J. F. Nash’s embedding theorem, which concludes that every Riemannian man-

ifold can be isometrically embedded into some Euclidean space, the question arose how to

characterize a Riemannian manifold with the help of its intrinsic and extrinsic invariants.

Riemann curvature invariants are utilized to solve this problem since these invariants are

widely convenient tools to characterize Riemannian manifolds and the basic properties of

the shape operator of a Riemannian manifold can be shown by the relations obtained on the

section curvature, Ricci curvature, and scalar curvature.
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During the 1990s, B.-Y. Chen established some inequalities involving the intrinsic invari-

ants and the extrinsic invariants. Some of the important inequalities and their results are

given as follows:

In [8], B.-Y. Chen proved the following relation between the sectional curvature K and the

shape operator AN for an n-dimensional submanifold M in Riemannian space form Rm(c̄):

AN >
n− 1

n
(c− c̄)In, (1.1)

where c = infK ̸= c̄ and In is the identity map. The equality case of (1.1) holds for all

p ∈ M if and only if M is totally geodesic.

In [9], B.-Y. Chen established the following inequality between the squared mean curvature

and Ricci curvature for a submanifold in a real space form Rm(c̄):

For each unit tangent vector X ∈ TpM
n, the following inequality is satisfied

∥H∥2 ≥ 4

n2
{Ric(X)− (n− 1)c̄}, (1.2)

where ∥H∥2 is the squared mean curvature and Ric(X) is the Ricci curvature of Mn at X.

The equality case of (1.2) holds for all unit tangent vectors at p if and only if either p is

a totally geodesic point or n = 2 and p is a totally umbilical point.

In literature, these types of inequalities are known as Chen-like inequalities.

In addition to these facts, the theory of statistical manifolds has substantial physical

and geometrical aspects. It has applications in neural networks, machine learning, artificial

intelligence, and black holes [2, 7, 14, 27]. Statistical manifolds were firstly introduced by S.

Amari [1] in his book. Later, the basic geometrical properties of hypersurfaces of statistical

manifolds were exposed by H. Furuhata in [15, 16]. Recently, Chen-type inequalities for

submanifolds of statistical manifolds have been studied by various authors in [3, 4, 5, 6, 11,

12, 13, 18, 19, 21, 22, 23, 24], etc.

The main purpose of the present paper is to establish Chen-like inequalities on hyper-

surfaces of statistical manifolds. Although it is clear that hypersurfaces are a special case

of submanifolds and there are various studies related to Chen-like inequalities on the sub-

manifolds of statistical manifolds in the literature, many exclusive and different results on

the hypersurfaces of these manifolds have been obtained with the help of the Riemannian

curvature invariants in this paper.
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2. Preliminaries

Let (M̃, g̃) be an n−dimensional Riemannian manifold equipped with a Riemannian metric

g̃ and {e1, . . . , en} be any orthonormal frame field of Γ(TM̃). The Ricci tensor S̃0 is defined

by

S̃0(X,Y ) =
n∑

j=1

g̃(R̃0(ej , X)Y, ej)

for any X,Y ∈ Γ(TM̃), where R̃0 is the Riemannian curvature tensor field of M̃ . The Ricci

curvature R̃ic
0
(X) of any vector field X is defined by

R̃ic
0
(X) = S̃0(X,X).

For a fixed i ∈ {1, · · · , n}, we write

R̃ic
0
(ei) ≡ S̃0(ei, ei) =

n∑
j=1

g̃(R̃0(ei, ej)ej , ei), (2.3)

which is equal to

R̃ic
0
(ei) =

n∑
j ̸=i

K̃0(ei, ej). (2.4)

Here, K̃0(ei, ej) denotes the sectional curvature of a plane section spanned by ei and ej for

i ̸= j ∈ {1, . . . , n}.

In [9], B.-Y. Chen extended the notion of Ricci curvature to k-Ricci curvature, 2 ≤ k ≤ n,

in an n-dimensional Riemannian manifold. Let πk be a k-plane section of TpM̃ and X be a

unit vector field in πk. If k = n then πn = TpM ; and if k = 2 then π2 is a plane section of

TpM̃ . Let us choose an orthonormal basis {e1, . . . , ek} of πk such that e1 = X. The k-Ricci

curvature of πk at X, denoted by R̃ic
0

πk
(X), is defined by

R̃ic
0

πk
(X) =

k∑
j ̸=i

K̃0(e1, ej).

For k = n, the n-Ricci curvature of X is denoted by R̃ic
0

TpM̃ (X).

The scalar curvature is one of the most studied classical curvature invariants. The scalar

curvature τ̃0(p) at a point p is defined by

τ̃0(p) =
∑

1⩽j⩽n

K̃0(ei, ej)

=
1

2

n∑
i=1

n∑
j ̸=i

g̃(R̃0(ei, ej)ej , ei). (2.5)
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The scalar curvature τ̃(πk) of the k-plane section πk is given by

τ̃(πk) =
1

2

k∑
i=1

k∑
j ̸=i

K̃0(ei, ej).

In particular, for k = n, the n-scalar curvature at a point p is denoted by τ̃
TpM̃

(p).

Let (M, g) be a hypersurface of (M̃, g̃) and N be the unit normal vector field of (M, g).

Denote by the Levi-Civita connection of (M̃, g̃) by ∇̃0. The Gauss and Weingarten formulas

are, respectively, given by

∇̃0
XY = ∇0

XY + g(A0
NX,Y )N (2.6)

and

∇̃0
XN = −A0

NX (2.7)

for any X,Y ∈ Γ(TM), where ∇0 is the induced linear connection and A0
N is the shape

operator of (M, g).

Denote the Riemannian curvature tensor of (M, g) by R0. The equation of Gauss is given

by

R0(X,Y )Z = R̃0(X,Y )Z + g(A0
NY, Z)A0

NX − g(A0
NX,Z)A0

NY (2.8)

for any X,Y, Z ∈ Γ(TM).

The hypersurface (M, g) is called totally geodesic if A0
N = 0, minimal if traceA0

N = 0. If

A0
N (X) = λX, where λ is a smooth function on M , then (M, g) is called totally umbilical

[10].

3. Statistical Manifolds and Their Hypersurfaces

Let (M̃, g̃) be a Riemannian manifold and ∇̃ be a torsion-free connection on (M̃, g̃).

The manifold is called a statistical manifold if the following relation is satisfied for any

X,Y, Z ∈ Γ(TM̃):

g̃(∇̃ZX,Y ) = Zg̃(X,Y )− g̃(X, ∇̃∗
ZY ), (3.9)

where

∇̃0
XY =

1

2
(∇̃XY + ∇̃∗

XY ). (3.10)
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Here, ∇̃∗ is called the dual connection of ∇̃∗, the pair (∇̃, g) is called a statistical structure

on (M̃, g̃). A statistical manifold with a torsion-free connection ∇̃ is usually denoted by

(M̃, g̃, ∇̃) [1].

Now, let us denote the Riemannian curvature tensor fields with respect to ∇̃ and ∇̃∗ by

R̃ and R̃∗. Then we have

g̃(R̃∗(X,Y )Z,W ) = −g̃(Z, R̃(X,Y )W ) (3.11)

for any X,Y, Z ∈ Γ(TM̃).

A statistical manifold is said to be of constant curvature c, if the equation

R̃(X,Y )Z =
c

4
{g̃(Y,Z)X − g̃(X,Z)Y } (3.12)

holds for any X,Y, Z ∈ Γ(TM) [15].

Considering the eq. (3.11), we see that (M̃, g̃, ∇̃) is of constant curvature with respect to

∇̃ if and only if it is of constant curvature with respect to R̃∗.

Let (M, g) be a hypersurface of (M̃, g̃, ∇̃). The Gauss and Weingarten formulas with

respect to ∇̃ and ∇̃∗ are, respectively, given by

∇̃XY = ∇XY + g(ANX,Y )N, (3.13)

∇̃XN = −A∗
NX + κ(X)N, (3.14)

∇̃∗
XY = ∇∗

XY + g(A∗
NX,Y )N, (3.15)

∇̃∗
XN = −ANX − κ(X)N (3.16)

for any X,Y ∈ Γ(TM). It is easy to show that the induced connection ∇∗ is the dual

connection of ∇. Here, κ is a 1-form, AN and A∗
N are the shape operators with respect to ∇̃

and its dual connection ∇̃∗, respectively.

Let R and R̃ denote the Riemannian curvature tensor (M, g,∇) and (M̃, g̃, ∇̃) respectively.

Then the following relation holds

R(X,Y )Z = R̃(X,Y )Z − g(A∗
NX,Z)ANY + g(A∗

NY, Z)ANX (3.17)

for any X,Y, Z ∈ Γ(TM) [15].
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Let π = Span {X,Y } be a plane section of Γ(TM). Then the K−sectional curvature is

defined by [20]

K̃(π) =
1

2

[
g̃(R̃(X,Y )Y,X) + g̃(R̃∗(X,Y )Y,X)

]
− g̃(R̃0(X,Y )Y,X). (3.18)

A hypersurface of (M̃, g̃, ∇̃) is called

i. totally geodesic with respect to ∇̃ (resp. ∇̃∗), if AN = 0 (resp.A∗
N = 0).

ii. totally umbilical with respect to ∇̃ (resp. ∇̃∗), if there exists a smooth function ρ

such that ANX = ρX (resp. A∗
NX = ρX).

iii. minimal with respect to ∇̃ (resp. ∇̃∗), if traceAN = 0 (resp. traceA∗
N = 0).

For more details on statistical manifolds and their submanifolds, we refer to [15, 16].

4. Ricci Curvature

In this section, we shall give some relations involving Ricci curvatures of hypersurfaces

immersed in (M̃, g̃, ∇̃).

Lemma 4.1. Let (M, g) be a hypersurface of (M̃, g̃, ∇̃) and {e1, . . . , en} be an orthonormal

basis of TpM at a point p ∈ M . For any unit tangent vector X at a point p, we have the

following equalities:

Ric0(X) = R̃ic
0

TpM (X) + traceA0
Ng(ANX,X)− g(A2

NX,X). (4.19)

n∑
j=2

g(R(X, ej)ej , X) =
n∑

j=2

g̃(R̃(X, ej)ej , X) + g(ANX,X)traceA∗
N

−g(A∗
NX,ANX). (4.20)

n∑
j=2

g(R(X, ej)X, ej) = −
n∑

j=2

g̃(R̃∗(X, ej)ej , X) + g(A∗
NX,X)traceAN

−g(A∗
NX,ANX). (4.21)

Proof. In view of (2.8), the proof of (4.19) is straightforward.

Now we shall prove (4.20). From (3.17), we may write

g(R(e1, e2)e2, e1) = g̃(R̃(e1, e2)e2, e1)− g(A∗
Ne1, e2)g(ANe2, e1) (4.22)

+g(A∗
Ne2, e2)g(ANe1, e1).
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Taking trace in (4.22), we get

n∑
j=2

g(R(e1, ej)ej , e1) =
n∑

j=2

g̃(R̃(e1, ej)ej , e1)

+g(ANe1, e1)

 n∑
j=2

g(ANej , ej)− g(A∗
Ne1, e1)


+

n∑
j=2

(g(A∗
Ne1, ej)g(ANe1, ej))− g(A∗

Ne1, e1)

−g(A∗
Ne1, e1)g(ANe1, e1),

which is equivalent to

n∑
j=2

g(R(e1, ej)ej , e1) =

n∑
j=2

g̃(R̃(e1, ej)ej , e1) + g(ANe1, e1)traceA
∗
N

−
n∑

j=2

g(A∗
Ne1, ej)g(ANe1, ej). (4.23)

Now, considering the fact that {e1, . . . , en} is an orthonormal basis of TpM , we can write

A∗
Ne1 = λ1e1 + · · ·+ λnen,

ANe1 = µ1e1 + · · ·+ µnen,

where λi, µi are real numbers for each i ∈ {1, . . . , n}. Thus, we have

n∑
j=2

g(A∗
Ne1, ej)g(ANe1, ej) = λ1µ1 + · · ·+ λnµn

= g(A∗
Ne1, ANe1). (4.24)

Using (4.24) in (4.23), we get

n∑
j=2

g(R(e1, ej)ej , e1) =
n∑

j=2

g̃(R̃(e1, ej)ej , e1)

+g(ANe1, e1)traceA
∗
N − g(A∗

Ne1, ANe1). (4.25)

Putting X = e1 in (4.25) we obtain (4.21).

Now we shall prove (4.21). Using (3.11) and (3.17), we have

g̃(R̃∗(e1, ej)ej , e1) = g̃(R̃(e1, ej)e1, ej)

= −g(R(e1, ej)e1, ej)− g(A∗
Ne1, e1)g(ANej , ej)

+g(A∗
Ne1, ej)g(ANe1, ej). (4.26)
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Taking trace in (4.26), we get

n∑
j=2

g(R(e1, ej)e1, ej) =
n∑

j=2

g̃(R̃∗(e1, ej)ej , e1) + g(A∗
Ne1, ej)traceAN

−g(A∗
Ne1, ANe1). (4.27)

Putting X = e1 in (4.27), we obtain (4.21).

Now, we shall give some relations involving K−Ricci curvature and K−scalar curvature

which are defined by

Rick(X) =

n∑
j ̸=i

K(ei, ej)

and

τk(p) =
1

2

n∑
i=1

n∑
j ̸=i

g̃(R̃0(ei, ej)ej , ei).

Theorem 4.1. Let (M, g) be a minimal hypersurface with respect to ∇̃ and ∇̃∗. Then we

have

Rick(X) +Ric0(X) = R̃ic
k

TpM (X) + R̃ic
0

TpM (X) (4.28)

for any unit vector X ∈ TpM .

Proof. Under the assumption, we have from (4.19) and (4.20) that

n∑
j=2

g(R(e1, ej)ej , e1) =
n∑

j=2

g̃(R̃(e1, ej)ej , e1)− g(A∗
Ne1, ANe1) (4.29)

and

n∑
j=2

g(R(e1, ej)e1, ej) = −
n∑

j=2

g̃(R̃∗(e1, ej)ej , e1)− g(A∗
Ne1, ANe1). (4.30)

If the equations (4.29) and (4.30) are subtracted from side to side, we get

n∑
j=2

[g(R(e1, ej)ej , e1) + g(R∗(e1, ej)ej , e1)] =

n∑
j=2

[
g̃(R̃(e1, ej)ej , e1)

+g̃(R̃∗(e1, ej)ej , e1)
]
.

In view of (3.18), we see that

n∑
j=2

[
K(e1, ej) +K0(e1, ej)

]
=

n∑
j=2

K̃(e1, ej) + K̃0(e1, ej). (4.31)

Putting X = e1 in (4.31), we obtain (4.28).
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Remark 4.1. Since

A0
NX = ANX +A∗

NX

for any X ∈ Γ(TM), it is clear that if ANX = A∗
NX = 0, then we have A0

N = 0. But

the converse part of this claim is not correct in general. Considering this fact, the claim of

Theorem 4.1 may not be correct when the hypersurface is minimal with respect to ∇̃0.

Now, we recall the Chen-Ricci inequality for a Riemannian submanifold [17, 26]:

Theorem 4.2. Let (M, g) be an n−dimensional submanifold of a Riemannian manifold

(M̃, g̃). Then the following statements are true.

i. For any unit tangent vector X, we have

Ric0(X) ⩽
1

4
n2 ∥H∥2 + R̃ic

0

TpM (X). (4.32)

ii. The equality case of (4.32) holds for all unit tangent vectors of TpM if and only if

either p is a totally geodesic point or n = 2 and p is a totally umbilical point.

Theorem 4.3. Let (M, g) be a n > 2 minimal hypersurface with respect to ∇̃ and ∇̃∗. Then

we have

Rick(X) ≥ R̃ic
0

TpM (X) (4.33)

for any unit tangent vector X ∈ TPM . The equality case of (4.33) holds for all X ∈ TpM if

and only if ANX = −A∗
NX.

Proof. Using the fact that traceAN = traceA∗
N = 0, we see that H = 0 from Remark

4.1. In view of (4.32), we get

Ric0(X) ≤ R̃ic
0

TpM (X). (4.34)

Using (4.34) in (4.28), we obtain (4.33). From Theorem 4.2, the equality case of (4.33) is

satisfied if and only if A0
NX = 0 which shows that ANX = −A∗

NX for all X ∈ TpM .

Now we recall the following theorem of T. Takahashi [25]:

Theorem 4.4. The necessary condition for a submanifold of an Euclidean space to be a

minimal immersion is that its Ricci curvature is negative semi-definite.

In the following corollary, we obtain a similar claim of Theorem 4.4 for a minimal hyper-

surface with respect to ∇̃ and ∇̃∗ on statistical manifolds with constant curvatures.
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Corollary 4.1. Let (M̃, g̃, ∇̃) be of K−constant curvature with c = 0 and (M, g) be a

minimal hypersurface with respect to ∇̃ and ∇̃∗. Then we have

Rick(X) ≥ 0

for any unit tangent vector X ∈ TpM .

Now we shall give the following lemma for later uses:

Lemma 4.2. Let (M, g) be a hypersurface of (M̃, g̃, ∇̃). Then the following relation is

satisfied for any unit tangent vector X ∈ TpM :

Rick(X) = R̃icTpM (X)− 1

2
g(ANX,X)traceA∗

N

+
1

2
g(A∗

NX,X)traceAN + g(A0
NX,X)traceA0

N +
∥∥A0

NX
∥∥2 . (4.35)

Proof. From (3.18), we have

R̃ic
k

TpM (ei) =
1

2

n∑
j=2

g̃(R̃(ei, ej)ej , ei) +
1

2

n∑
j=2

g̃(R̃∗(ei, ej)ej , ei)

−
n∑

j=2

g̃(R̃0(ei, ej)ej , ei). (4.36)

In view of (4.19), (4.20), and (4.21) in (4.36), we obtain

R̃ic
k

TpM (ei) =
1

2

n∑
j=2

g(R(ei, ej)ej , e1) +
1

2

n∑
j=2

g(R(e1, ej)ej , e1)

−
n∑

j=2

g(R0e1, ej)ej , e1) +
1

2
g(ANe1, e1)traceA

∗
N

−1

2
g(A∗

Ne1, ANe1)−
1

2
g(A∗

Ne1, e1)traceAN

+
1

2
g(ANe1, A

∗
Ne1)− g(A0

Ne1, e1)traceA
0 + g(A0

Ne1, A
0
Ne1).

Putting X = e1, the proof of (4.35) is straightforward.

From Lemma 4.2, we get the following corollary immediately:

Corollary 4.2. Let (M, g) be a hypersurface of (M̃, g̃, ∇̃). Then the following inequality is

satisfied for any unit tangent vector X ∈ TpM :

Rick(X) ⩽ R̃icTpM (X)− 1

2
g(ANX,X)traceA∗

N

+
1

2
g(A∗

NX,X)traceAN + g(A0
NX,X)traceA0

N . (4.37)
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5. Scalar Curvature

In this section, we shall give some relations involving scalar curvatures of hypersurfaces

immersed in (M̃, g̃, ∇̃).

Let {e1, e2, . . . , en} be an orthonormal basis of TpM at a point p ∈ M . We put

σij = g(ANei, ej) and σ∗
ij = g(A∗

Nei, ej)

for any i, j ∈ {1, 2, · · · , n}. From (3.17), we write

g(R(ei, ej)ej , ei) = g̃(R̃(ei, ej)ej , ei)− σ∗
ijσji + σ∗

jjσii. (5.38)

Taking trace in (5.38), we get

τ(p) = τ̃TpM (p)− 1

2

n∑
i,j=1

(
σ∗
ijσji + σ∗

jjσii
)
. (5.39)

Let us define

∣∣A0
N

∣∣ =
 n∑

i,j=1

g(A0
Nei, ej)

2

. (5.40)

In light of the above facts, we shall state the following lemma:

Lemma 5.1. For any hypersurface of (M̃, g̃, ∇̃), we have

2
n∑

i,j=1

(
σ∗
ijσji + σ∗

jjσii
)

= 4
[
traceA0

N

]2 − [traceAN ]2 − [traceA∗
N ]2

+4
∣∣A0

N

∣∣− ∥A∗
N∥2 − ∥AN∥ . (5.41)

Proof. We can write

2
n∑

i,j=1

(
σ∗
ijσji + σ∗

jjσii
)

=

 n∑
i,j=1

σii + σ
∗
jj

2

−

(
n∑

i=1

σii

)2

−

(
n∑

i=1

σ∗
jj

)2

+

 n∑
i,j=1

σ∗
ij + σ

∗
ji

2

−

(
n∑

i=1

σ∗
ij

)2

−

(
n∑

i=1

σji

)2

. (5.42)
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On the other hand, we also have

n∑
i,j=1

σii + σ∗
jj =

n∑
i,j=1

[g(ANei, ei) + g(A∗
Nej , ej)]

=
n∑

i=1

g(ANei, ei) +
n∑

j=1

g(A∗
Nej , ej)

= traceAN + traceA∗
N

= trace(AN +A∗
N )

= 2traceA0
N . (5.43)

In a similar way, we have

n∑
i,j=1

σ∗
ij + σji =

n∑
i,j=1

[g(A∗
Nei, ei) + g(ANej , ej)]

=
n∑

i,j=1

g((A∗
N +AN )ei, ej)

= 2

n∑
i,j=1

g(A0
Nei, ej) (5.44)

The proof is straightforward from computing the other terms on the right-hand side of

(5.42) in a similar way.

From the equation (5.39) and (5.41), we get the following lemma:

Proposition 5.1. For any hypersurface of (M̃, g̃, ∇̃), we have

τ(p) = τ̃TpM (P )− 2
[
traceA0

N

]2
+

1

2
[traceAN ]2 +

1

2
[traceA∗

N ]2

−2
∣∣A0

N

∣∣+ 1

2
∥A∗

N∥2 + 1

2
∥AN∥2 . (5.45)

Theorem 5.1. Let (M, g) be a hypersurface of (M̃, g̃, ∇̃). Then we have

τ(p) ≥ τ̃TpM (p)− 2
[
traceA0

N

]2
+

1

2
[traceAN ]2 +

1

2
[traceA∗

N ]2 − 2
∣∣A0

N

∣∣ (5.46)

for any p ∈ M . The equality case of (5.46) holds for all p ∈ M if and only if M is totally

geodesic.

Proof. The proof of (5.46) is straightforward from (5.45). The equality case of

(5.46) holds for all p ∈ M if and only if we have A∗
N = AN = 0. Using the fact that

A0
N =

1

2
(ANX + A∗

NX), we obtain A0
NX = 0 for any X ∈ TpM . This shows that M is

totally geodesic. The converse part of the proof is straightforward.

Now we shall give the following lemma for later uses:
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Lemma 5.2. For any hypersurface of (M̃, g̃, ∇̃), we have

τk(p) = τ̃k(p) + (traceA0
N )2 + trace(A0

N )2. (5.47)

Proof. Let {e1, . . . , en} be an orthonormal basis of TpM at a point p ∈ M . From

Lemma 4.2, we write

Rick(ei) = R̃icTpM (ei)−
1

2
g(ANei, ei)traceA

∗
N +

1

2
g(A∗

Nei, ei)traceAN

+traceA0
Ng(A0

Nei, ei) +
∥∥A0

Nei
∥∥2 (5.48)

for any i ∈ {1, . . . , n}. Taking trace in (5.48), we get

τk(p) = τ̃kTpM (p) +
1

2
traceAN traceA∗

N − 1

2
traceAN traceA∗

N

+(traceA0
N )2 +

n∑
i=1

g(A0
Nei, A

0
Nei) (5.49)

which is equivalent to (5.47).

As a result of Lemma 5.2, we obtain the following corollaries:

Corollary 5.1. Let (M, g) be a hypersurface of (M̃, g̃, ∇̃). Then we have

τ(p) ≤ τ̃(p) + trace(A0
N )2 (5.50)

for any p ∈ M . The equality case of (5.50) holds for all p ∈ M if and only if M is minimal.

Corollary 5.2. Let (M, g) be a totally umbilical hypersurface of (M̃, g̃, ∇̃). Then we have

τ̃TpM (p) < τTpM (p) (5.51)

Proof. If (M, g) is a totally umbilical hypersurface, then there exists a smooth

function ρ0 on M such that we can write A0
NX = ρ0X for any X ∈ Γ(TM). Thus, we obtain

from (5.47) that

τ̃TpM (p) = τTpM (p) + (n2 − n)λ2. (5.52)

In view (5.52), we have (5.51).
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6. Examples

Now we shall give an example satisfying some results obtained in this paper:

Example 6.1. Let us consider a hypersurface M given by

M = {(cosx1, sinx1, x2, x3) : x1 ∈ (0, 2π], x2, x3 ∈ R}

in E4. The natural tangent vector fields of M are given by

e1 = −sinx1∂1 + cosx1∂2, e2 = ∂3, e3 = ∂4

and the normal vector field of M is given by

N = cosx1∂1 + sinx1∂2,

where {∂1, ∂2, ∂3, ∂4} is the natural basis of E4. By a straightforward computation, we easily

have

∇̃0
e1e1 = −cosx1∂1 − sinx1∂2, ∇̃0

e2e2 = 0, ∇̃0
e3e3 = 0

and ∇̃0
eiej = 0 for i ̸= j ∈ {1, 2, 3}. From (2.6), we get

A0
N =


−1 0 0

0 0 0

0 0 0

 . (6.53)

Now, suppose that the connections ∇̃ and ∇̃∗ are satisfied the following relations:

∇̃e1e1 = −2 cosx1∂1 ∇̃e2e2 = e2, ∇̃e3e3 = e3, (6.54)

∇̃∗
e1e1 = −2 sinx1∂2, ∇̃∗

e2e2 = −e2, ∇̃∗
e3e3 = −e3,

and ∇̃eiej = ∇̃∗
eiej = 0 for i ̸= j ∈ {1, 2, 3}. Then we get

K̃(e1, e2) = K̃(e1, e3) = K̃(e2, e3) = 0

and

R̃icTpM (e1) = R̃icTpM (e2) = R̃icTpM (e1) = τ̃TpM (p) = 0. (6.55)

In view of (3.13), (3.15) and (6.54), we have

AN =


−2 cos2 x1 0 0

0 0 0

0 0 0

 and A∗
N =


−2 sin2 x1 0 0

0 0 0

0 0 0

 . (6.56)
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From these facts, it is clear that

K(e1, e2) = K(e1, e3) = K(e2, e3) = 0, (6.57)

Ric(e1) = Ric(e2) = Ric(e3) = τ(p) = 0. (6.58)

Considering (6.53), (6.55), (6.56) and (6.58), we see that the hypersurface M is satisfied

the claims of Theorem 4.1, Theorem 4.3, Corollary 4.2, Theorem 5.1, and Corollary 5.1.

Example 6.2. Let us consider the following hypersurface

M = {(x1, x2, x3, 0) : ∀x1, x2, x3 ∈ R}

in E4. Then it is clear that TpM = Span {e1, e2, e3} and N = ∂4 such that ei = ∂i for

i ∈ {1, 2, 3}. Suppose that the connection ∇ and ∇̃∗ are satisfied

∇̃e1e1 = ∂1 + ∂4, ∇̃∗
e1e1 = −∂1 − ∂4,

∇̃e1e1 = ∂2 + ∂4, ∇̃∗
e2e2 = −∂2 − ∂4,

and the other component of ∇̃eiej are equal to zero for i, j ∈ {1, 2, 3}. Then we have

∇e1e1 = ∂1, ∇∗
e1e1 = −∂1,

∇e2e2 = ∂2, ∇∗
e2e2 = −∂2,

and other component of ∇eiej are equal to zero for i, j ∈ {1, 2, 3}. By a straightforward

computation, we obtain M is minimal with respect to ∇̃ and ∇̃∗, and c = 0. Also, we see

that the hyperplane M satisfies of Corollary 4.1 by Rick(X) = 0 for any X ∈ TpM at any

point p ∈ M .

Acknowledgments. The authors are thankful to the reviewers for their valuable com-

ments towards the improvement of the paper.
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1. Introduction

The concept of warped product of Riemannian manifolds [3] is a generalization of the direct

product of Riemannian manifolds and plays a very important role in physics, as well as in

differential geometry, especially in the theory of relativity. Indeed, the standard space-time

models such as Robertson-Walker, Schwarzschild, static and Kruskal, are warped products.

Also, the simplest models of neighborhoods of stars and black holes are warped products

[12]. Moreover, some solutions to Einstein’s field equation can be written in terms of warped

products [1].
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On the other hand, there is an important notion known as Einstein manifold [2], which

has a central place in both mathematics and physics. Indeed, Einstein manifolds are not

only interesting themselves, but they are also related to many important topics of differen-

tial geometry such as Riemannian submersions, homogenous Riemannian spaces, Yang-Mills

theory, self-dual manifolds of dimension four, holonomy groups, etc.

In this paper, we study twisted products and quasi-Einstein manifolds, which are gener-

alizations of both of the two concepts mentioned above.

2. Preliminaries

2.1. Twisted products. Let M1 and M2 be two Riemannian manifolds endowed with the

Riemannian metric tensors g1 and g2 and let f be a positive smooth function defined on

M1 × M2. Denote by π1 and π2 the canonical projections of M1 × M2 onto M1 and M2,

respectively. Then the twisted product [7] M1 ×f M2 of (M1, g1) and (M2, g2) is the product

manifold M := M1 ×M2 equipped with metric g given by

g = π∗
1(g1)⊕ f2π∗

2(g2), (2.1)

where π∗
i (gi) is the pullback of gi via πi for i ∈ {1, 2}. Then the function f is called the

twisting function of the twisted product M1×f M2 = (M, g). If f only depends on the points

of M1, then we get a warped product [3] and if f is a constant, then we get a direct product

manifold [8].

LetM1×fM2 be a twisted product manifold with the Levi-Civita connection∇ and denote

by ∇i the Levi-Civita connection of Mi for i ∈ {1, 2}. By usual convenience, we denote the

set of lifts of vector fields on Mi by L(Mi) and use the same notation for a vector field and

for its lift. On the other hand, π1 is an isometry and π2 is a (positive) homothety, so they

preserve the Levi-Civita connection. Thus, there is no confusion using the same notation for

a connection on Mi and for its pullback via πi. Then, the covariant derivative formulas of

twisted product manifold are given by the following.
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Lemma 2.1. [7] Let M1 ×f M2 be a twisted product manifold. Then for X,Y ∈ L(M1) and

U, V ∈ L(M2), we have

∇XY = ∇1
XY , (2.2)

∇XV = ∇V X = X(k)V, (2.3)

∇UV = ∇2
UV + U(k)V + V (k)U − g(U, V )∇k, (2.4)

where k = ln f and ∇k is the gradient of the function k.

The manifold {p}×M2 is called a fiber of the twisted product and the manifold M1×{q}

is called a base manifold of M1 ×f M2, where p ∈ M1 and q ∈ M2. The base manifold is

totally geodesic and the fiber is totally umbilical in M1 ×f M2.

As in [10], we define hk1(X,Y ) = XY (k)−(∇1
XY )(k) for all X,Y ∈ L(M1) and hk2(U, V ) =

UV (k)− (∇2
UV )(k) for all U, V ∈ L(M2). Then the Hessian form hk of k on (M, g) satisfies

hk(X,Y ) = hk1(X,Y ), (2.5)

hk(U, V ) = hk2(U, V )− 2U(k)V (k) + g(U, V )g(∇k,∇k). (2.6)

Let 1R and 2R be the lifts of Riemann curvature tensors of (M1, g1) and (M2, g2), respec-

tively and let R be the Riemann curvature tensor of the twisted product M1 ×f M2. Then,

by direct computations and using (2.2)–(2.4), we have the following relations.

Lemma 2.2. Let X,Y, Z ∈ L(M1) and U, V,W ∈ L(M2). Then, we have

RXY Z = 1R(X,Y )Z, (2.7)

RXY U = 0, (2.8)

RUV X = UX(k)V − V X(k)U, (2.9)

RXUY =

(
hk1(X,Y ) +X(k)Y (k)

)
U, (2.10)

RUXV = −XV (k)U +

(
X(k)∇k +Hk(X)

)
g(U, V ), (2.11)

RUV W = 2R(U, V )W −
(
hk2(V,W )−W (k)V (k)

)
U

+

(
hk2(U,W )−W (k)U(k)

)
V

−
(
Hk(U) + U(k)∇k

)
g(V,W )+

(
Hk(V ) + V (k)∇k

)
g(U,W ), (2.12)
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where Hk is the Hessian tensor of k on M1×f M2, i.e., H
k(E) = ∇E∇k for any vector field

E on M1 ×f M2.

Next, let 1Ric and 2Ric be the lifts of Ricci curvature tensors of (M1, g1) and (M2, g2),

respectively and let Ric be the Ricci curvature tensor of the twisted product M1 ×f M2.

Then, by direct computations and using (2.5)–(2.12), we have the following relations.

Lemma 2.3. Let X,Y ∈ L(M1) and U, V ∈ L(M2). Then, we have

Ric(X,Y ) = 1Ric(X,Y )−m2

(
hk1(X,Y ) +X(k)Y (k)

)
, (2.13)

Ric(X,U) = −(m2 − 1)XU(k), (2.14)

Ric(U, V ) = 2Ric(U, V )− (m2 − 2)hk2(U, V )

+ (m2 − 2)U(k)V (k)− g(U, V )∆k, (2.15)

where ∆k is the Laplacian of k on M1 ×f M2 and mi = dim(Mi).

2.2. Quasi-Einstein Manifolds. A Riemannian manifold (Mm, g), m ≥ 2, is said to be an

Einstein manifold [2] if its Ricci tensor Ric satisfies the condition Ric = τ
mg, where τ denotes

the scalar curvature of M . A non-flat Riemannian manifold (M, g), m ≥ 2, is said to be a

quasi-Einstein manifold [6] if the Ricci tensor field of M satisfies

Ric = αg + βA⊗A, (2.16)

where α and β are scalar functions on M with β ̸= 0 and A is non-zero 1-form such that

g(X, ξ) = A(X) for every vector field X on M , ξ being a unitary vector field which is called

the generator of the manifold M. Note that if β = 0, then the manifold reduces to an Einstein

manifold.

Remark 2.1. In what follows, we shall use this notion in a slightly enlarged sense, allowing

for the non-zero vector field ξ to be non-unitary. Notice also that quasi-Einstein manifolds

coincide with trivial almost η-Ricci solitons [4], i.e., almost η-Ricci solitons with Killing

potential vector field.

3. Main Results

Let (Mm, g), m ≥ 3, be a quasi-Einstein manifold with associated scalar functions α and

β and the generator vector field ξ. By a contraction from (2.16), we have

τ = mα+ β|ξ|2, (3.17)
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where τ is the scalar curvature of M. By taking the gradient of (3.17), we obtain

∇τ = m∇α+ |ξ|2∇β + β∇(|ξ|2). (3.18)

Now, by taking the divergence of (2.16) for any vector field X on M, we have

div(Ric)(X) = g

(
∇α+ β∇ξξ + ξ(β)ξ + β div(ξ)ξ,X

)
.

Using the Schur’s Lemma, i.e., dτ = 2div(Ric) and (3.18), we obtain

(m− 2)∇α = 2β∇ξξ + 2

(
ξ(β) + β div(ξ)

)
ξ. (3.19)

Now, we suppose that ξ is a concircular vector field [11], i.e., ∇Zξ = aZ for any vector field

Z on M , with a a smooth function on M . Then, we have div(ξ) = ma and the equation

(3.19) becomes

(m− 2)∇α = 2

(
ξ(β) + (m+ 1)aβ

)
ξ. (3.20)

On the other hand, upon direct computations, we find

R(X,Y )ξ = X(a)Y − Y (a)X

for any vector fields X and Y on M and so, we deduce that

Ric(ξ, ξ) = −(m− 1)ξ(a). (3.21)

But the equation (2.16) gives

Ric(ξ, ξ) = α|ξ|2 + β|ξ|4. (3.22)

From (3.21) and (3.22), we deduce that −(m− 1)ξ(a) = |ξ|2(α+ β|ξ|2) and so

α = −m−1
|ξ|2 ξ(a)− β|ξ|2. (3.23)

Assume now that a is constant. Using (3.23) in (3.20), we get

−(m− 3)

(
β∇(|ξ|2) + |ξ|2∇β

)
= 2

(
ξ(β) + (m+ 1)aβ

)
ξ. (3.24)

Taking the inner product of (3.24) with ξ, we get

−(m− 3)βξ(|ξ|2) = (m− 1)|ξ|2ξ(β) + 2(m+ 1)aβ|ξ|2. (3.25)

Since ξ(|ξ|2) = 2a|ξ|2, from (3.25), we find

ξ(β) = −4aβ.
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Finally, using (3.18), we arrive to

∇τ = −(m− 1)

(
β∇(|ξ|2) + |ξ|2∇β

)
(3.26)

and by taking the inner product of (3.26) with ξ, we find

ξ(τ) = −2(m− 1)aβ|ξ|2.

On the other hand, if ξ is of constant length, then a = 0 and ∇α = −|ξ|2∇β, which is

combined with (3.20) to obtain

−(m− 2)|ξ|2∇β = 2ξ(β)ξ (3.27)

and by taking the inner product of (3.27), we get ξ(β) = 0, hence ξ(α) = 0.

Therefore, we get the following two results.

Theorem 3.1. Let (Mm, g), m ≥ 3, be a quasi-Einstein manifold with associated scalar

functions α and β and the generator vector field ξ such that ξ is concircular with a constant.

If β is constant, then ξ is ∇-parallel or M is a Ricci-flat manifold.

Theorem 3.2. Let (Mm, g), m ≥ 3, be a quasi-Einstein manifold with associated scalar

functions α and β and the generator vector field ξ such that ξ is concircular. If ξ is of

constant length, then ξ is ∇-parallel and the functions α and β are constant along the integral

curves of ξ.

Now we give a new characterization for twisted products.

Theorem 3.3. Let (M, g) be a pseudo-Riemannian manifold and let F1 and F2 be the canon-

ical foliations on M . Suppose that F1 and F2 intersect perpendicularly everywhere. Then

M is a locally twisted product M1 ×f M2 with a twisting function f if and only if for any

W ∈ L(M2), we have

LW g = 0 on M1 (3.28)

and there exists a smooth function µ on M such that for any Z ∈ L(M1), we have

LZg = 2Z(µ)g on M2, (3.29)

where LW is the Lie derivative with respect to W and M1 (resp. M2) is the integral manifold

of F1 (resp. F2).
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Proof. Let M1 ×f M2 be a twisted product with the metric g. Then using the Lie

derivative formula for any X,Y, Z ∈ L(M1) and U, V,W ∈ L(M2), we have

(LW g)(X,Y ) = −2g(σ1(X,Y ),W ) (3.30)

and

(LZg)(U, V ) = −2g(σ2(U, V ), Z), (3.31)

where σ1 (resp. σ2) denotes the second fundamental form of F1 (resp. F2), (e.g. see [5], p.

195). Hence, using (2.2), we get

(LW g)(X,Y ) = 0

from (3.30) and we get (3.28). Next, using (2.4), we get

(LZg)(U, V ) = −2g

(
− g(U, V )P1∇(ln f), Z

)
(3.32)

from (3.31), where Pi : L(M1 × M2) → L(Mi) for i ∈ {1, 2}. By a direct computation, we

obtain

(LZg)(U, V ) = 2Z(ln f)g(U, V )

from (3.32). Thus, we get (3.29) for µ = ln f .

Conversely, suppose that the conditions (3.28) and (3.29) hold. Then for any X,Y ∈

L(M1) and W ∈ L(M2), using (3.28) and (3.30), we get g(σ1(X,Y ),W ) = 0. It follows that

σ1(X,Y ) = 0 for all X,Y ∈ L(M1) and so F1 is totally geodesic. On the other hand for any

Z ∈ L(M1) and U, V ∈ L(M2), using (3.29) and (3.31), we have

−2g(σ2(U, V ), Z) = 2Z(µ)g(U, V ).

After a straightforward computation, we get

g(σ2(U, V ), Z) = g

(
− g(U, V )∇µ, Z

)
.

It follows that σ2(U, V ) = −g(U, V )P1∇µ for all U, V ∈ L(M2). Thus, F2 is totally umbilical

with the mean curvature vector field −P1∇µ. Therefore, it follows from Proposition 3(b) of

[13] that M is a locally twisted product M1 ×f M2 with f = eµ and M1 (resp. M2) is the

integral manifold of F1 (resp. F2). □
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Remark 3.1. Let {e1, ..., em1 , ω1, ..., ωm2} be an orthonormal basis of the twisted product

M1 ×f M2, where {e1, ..., em1} are tangent to M1 and {ω1, ..., ωm2} are tangent to M2. Then

by (2.1), we see that {e1, ..., em1} is an orthonormal basis of (M1, g1) and {fω1, ..., fωm2} is

an orthonormal basis of (M2, g2).

Let ∆1 and ∆2 be the lifts of Laplacian operators on (M1, g1) and (M2, g2), respectively

and let ∆ be the Laplacian operator on the twisted product M1 ×f M2. In view of Remark

3.1 and using (2.5) and (2.6), we get

∆k = ∆1k +
1

f2
∆2k +m2g(∇k,∇k)− 2g(P2∇k, P2∇k).

Notice that for m2 ≥ 2, we have m2g(∇k,∇k)− 2g(P2∇k, P2∇k) ≥ 0. Moreover, we have

∆1k = ∆k − 1

f2
∆2k −

(
m2g(∇k,∇k)− 2g(P2∇k, P2∇k)

)
and

∆2k = f2

(
∆k −∆1k −

(
m2g(∇k,∇k)− 2g(P2∇k, P2∇k)

))
.

Also ∆k = 0 if and only if

∆1k = − 1

f2
∆2k −

(
m2g(∇k,∇k)− 2g(P2∇k, P2∇k)

)
.

If ∆2k ≥ 0, then ∆1k ≤ 0, and by Hopf’s Lemma we deduce that k = ln f is constant on

both M2 and M1.

Therefore, we get the following result.

Proposition 3.1. Let M1 ×f M2 be a twisted product manifold with harmonic function

k = ln f with respect to ∆ and m2 ≥ 2. If ∆2k ≥ 0, then ∆1k ≤ 0. As a consequence, the

twisted product manifold is a direct product.

Similarly, we obtain the following.

Proposition 3.2. Let M1 ×f M2 be a twisted product manifold with harmonic function

k = ln f with respect to ∆ and m2 ≥ 2. If ∆1k ≥ 0, then ∆2k ≤ 0. As a consequence, the

twisted product manifold is a direct product.

Next, we shall examine the condition of quasi-Einstein on a twisted product to its factor

manifolds.
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Theorem 3.4. Let M1 ×f M2 be a twisted product manifold. Then it is a quasi-Einstein

manifold with associated scalar functions α and β and 1-form A if and only if the followings

hold:

(a) 1Ric = αg1 + βÃ⊗ Ã+m2d̃k ⊗ d̃k +m2h
k
1, where Ã = A|M1 and d̃k = dk|M1,

(b) 2Ric = f2(α+∆k)g2 + (m2 − 2)hk2 − (m2 − 2)d̃k ⊗ d̃k + βf4Ã⊗ Ã, where

Ã = A|M2 and d̃k = dk|M2 ,

(c) We have −(m2 − 1)XV (k) = βA(X)A(V ) for any X ∈ L(M1) and V ∈ L(M2).

Proof. On M1, we have

αg + βA⊗A = 1Ric−m2h
k
1 −m2dk ⊗ dk

from (2.13) and (2.16). By using (2.1) and (2.5), we obtain

1Ric = αg1 + βÃ⊗ Ã+m2d̃k ⊗ d̃k +m2h
k
1,

where Ã = A|M1 and d̃k = dk|M1 , as desired.

Similarly, on M2, we have

αg + βA⊗A = 2Ric− (m2 − 2)hk2 + (m2 − 2)dk ⊗ dk −∆kg

from (2.15) and (2.16). By using (2.1), we obtain

2Ric = f2(α+∆k)g2 + (m2 − 2)hk2 − (m2 − 2)d̃k ⊗ d̃k + βf4Ã⊗ Ã,

where Ã = A|M2 and d̃k = dk|M2 , as desired. On the other hand, from (2.14) and (2.16), we

easily get (3). The converse is just a verification. □

Theorem 3.5. Let M1 ×f M2 be a twisted product quasi-Einstein manifold with associated

scalar functions α and β. If the generator vector field ξ is tangent to the base manifold M1,

then the Ricci tensors of M1 and M2 satisfy the following equations

1Ric(X,Y ) = αg1(X,Y ) +m2

(
hk1(X,Y ) +X(k)Y (k)

)
+ βg1(X, ξ)g1(Y, ξ), (3.33)

2Ric(U, V ) = f2g2(U, V )(α+∆k)+(m2 − 2)hk2(U, V )− (m2 − 2)U(k)V (k), (3.34)

where X,Y ∈ L(M1) and U, V ∈ L(M2).
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Proof. For any X,Y ∈ L(M1), using (2.1) and (2.16), we have

Ric(X,Y ) = αg1(X,Y ) + βg1(X, ξ)g1(Y, ξ).

By (2.13), we get (3.33).

Similarly for any U, V ∈ L(M2), using (2.1) and (2.16), we have

Ric(U, V ) = αf2g2(U, V ),

since g(U, ξ) = 0. By (2.15), we get (3.34). □

Let 1τ and 2τ be the lifts of scalar curvatures of (M1, g1) and (M2, g2), respectively and

let τ be the scalar curvature of the twisted product M1 ×f M2. In view of Theorem 3.5 and

Remark 3.1, we obtain the following.

Corollary 3.1. Let M1×fM2 be a twisted product quasi-Einstein manifold with the associated

scalar functions α and β. If the generator vector field ξ is tangent to the base manifold M1,

then, we have

τ = (m1 +m2)α+ β|ξ|2,

1τ = m1α+ β|ξ|2 +m2∆
1k +m2g1(∇k,∇k), (3.35)

2τ = m2f
2(α+∆k) + (m2 − 2)∆2k − (m2 − 2)f4g2(∇k,∇k), (3.36)

where ∆i is the Laplacian operator on (Mi, gi) for i ∈ {1, 2}.

Theorem 3.6. Let M1 ×f M2 be a twisted product quasi-Einstein manifold with associated

scalar functions α and β. If the generator vector field ξ is tangent to the fiber manifold M2,

then the Ricci tensors of M1 and M2 satisfy the following equations

1Ric(X,Y ) = αg1(X,Y ) +m2

(
hk1(X,Y ) +X(k)Y (k)

)
, (3.37)

2Ric(U, V ) = f2g2(U, V )(α+∆k) + (m2 − 2)hk2(U, V )

− (m2 − 2)U(k)V (k) + βf4g2(U, ξ)g2(V, ξ), (3.38)

where X,Y ∈ L(M1) and U, V ∈ L(M2).

Proof. For any X,Y ∈ L(M1), using (2.1) and (2.16), we have

Ric(X,Y ) = αg1(X,Y ),
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since g(X, ξ) = 0. By (2.13), we get (3.37).

Similarly, for any U, V ∈ L(M2), using (2.1) and (2.16), we have

Ric(U, V ) = αf2g2(U, V ) + βf4g2(U, ξ)g2(V, ξ).

By using (2.15), we get (3.38). □

In view of Theorem 3.6 and Remark 3.1, we obtain the following.

Corollary 3.2. Let M1×fM2 be a twisted product quasi-Einstein manifold with the associated

scalar functions α and β. If the generator vector field ξ is tangent to the fiber manifold M2,

then, we have

τ = (m1 +m2)α+ β|ξ|2,

1τ = m1α+m2∆
1k +m2g1(∇k,∇k), (3.39)

2τ = m2f
2(α+∆k) + (m2 − 2)∆2k − (m2 − 2)f4g2(∇k,∇k) + βf4|ξ|2. (3.40)

Finally, motivated by the results of [9] on warped product quasi-Einstein manifolds, we

obtain the following results for twisted product quasi-Einstein manifolds.

Theorem 3.7. Let M1 ×f M2 be a twisted product quasi-Einstein manifold with associated

positive scalar functions α and β such that the generator vector field ξ tangent to M1. If M1

is compact and 1τ = 0, then the twisted product manifold is a direct product.

Proof. We have

m2∆
1k = −m1α− β|ξ|2 −m2g1(∇k,∇k)

from (3.35). Under the given hypothesis, it follows that ∆1k ≤ 0. Namely, ∆1k has constant

sign on M1. By Hopf’s Lemma, the function k = ln f is constant on M1, since M1 is

compact. Therefore, the twisting function f only depends on the points of M2. Thus, the

twisted product manifold is a direct product of (M1, g1) and (M2, g̃2), where g̃2 = f2g2. □

Similarly, with the help of (3.39), we obtain the following result.

Theorem 3.8. Let M1 ×f M2 be a twisted product quasi-Einstein manifold with associated

scalar functions α and β such that the generator vector field ξ tangent to M2 and α ≥ 0. If

M1 is compact and 1τ = 0, then the twisted product manifold is a direct product.
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Theorem 3.9. Let M1 ×f M2 be a twisted product quasi-Einstein manifold with associated

scalar functions α and β such that the generator vector field ξ tangent to M1 and α+∆k ≤ 0.

If M2 is compact, 2τ = 0 and m2 ≥ 3, then the twisted product manifold is a warped product.

Proof. We have

(m2 − 2)∆2k = −m2f
2(α+∆k) + (m2 − 2)f4g2(∇k,∇k)

from (3.36). Under the given hypothesis, it follows that ∆2k ≥ 0. Namely, ∆2k has constant

sign on M2. By Hopf’s Lemma, the function k = ln f is constant on M2, since M2 is

compact. Therefore, the twisting function f only depends on the points of M1. Thus, the

twisted product manifold is a warped product of (M1, g1) and (M2, g2). □

Similarly, with the help of (3.40), we obtain the following result.

Theorem 3.10. Let M1 ×f M2 be a twisted product quasi-Einstein manifold with associated

positive scalar functions α and β such that the generator vector field ξ tangent to M2 and

α+∆k ≤ 0, β < 0. If M2 is compact, 2τ = 0 and m2 ≥ 3, then the twisted product manifold

is a warped product.
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Abstract. In this study, we investigate the equiaffine invariants of a parametrized curve

in the 3-dimensional affine space R3 by using a simplification of Caputo fractional deriva-

tive. We introduce the so-called fractional equiaffine arclength function for a non-degenerate

parametrized curve, providing the notions of fractional equiaffine frame and curvatures. Fur-

thermore, we give the relations between the fractional and standard equiaffine curvatures.
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1. Introduction

Fractional calculus extends to arbitrary orders the notions of classical derivative and inte-

gral of a function and has a remarkable historical background, which it can be found in [22].

This interesting field has applications ranging from physical phenomena ([20]), dynamical

systems ([27]), viscoelasticity ([15], [24]) to medicine [8].

Recently, there have been ascending contributions to the differential geometric applications

of fractional calculus. From the viewpoints of Riemannian and Finsler geometries, these
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contributions can be found in [4], [5]. Also, we refer to [1], [2], [9], [10], [11], [16], [17], [19],

[25], [26], [28], [29] for the contributions to the differential geometries of curves and surfaces.

We will consider a simplification of Caputo fractional derivative as follows: let f(t) and

g(x) be smooth functions and denote by Dα Caputo fractional derivative. Then the simplifi-

cation, relating to the derivative of the composite function of f(t) and g(x), that we will use

is given by

(Dα
xf)(g(x)) =

αx1−α

Γ(2− α)

df

dt

dg

dx
. (1.1)

The idea of using Equation (1.1) in the study of differential geometric curves was first pro-

posed in [26] because of the reason that Caputo fractional derivative of composite functions

is given by an infinite series. The derivative of composite functions, i.e. chain rule, is an es-

sential tool for the parametrized objects in differential geometry. To overcome this difficulty

in the case of Caputo fractional derivative, we will use Equation (1.1) in our calculations as

did the authors in [26].

In this study, we perform Equation (1.1) in order to investigate the equiaffine invariants of

the non-degenerate parametrized curves in the 3-dimensional affine space R3. Our motivation

of investigating the equiaffine invariants is the following.

Let r(s) be a regular parametrized curve in a Euclidean space E3 by arclength and ×

denote the cross product. Let {t,n,b} be the Frenet frame along r(s) such that (see [21])

t =
dr

ds
, n =

d2r/ds2

∥d2r/ds2∥
, b = t× n,

where ∥.∥ denotes the induced norm in E3 by the Euclidean scalar product.

If we use Equation (1.1) instead of the standard ordinary derivative, i.e. d/ds, then the set

of Frenet vectors is again {t,n,b}. This situation changes for the equiaffine Frenet frame of a

non-degenerate curve in R3. More explicitly, the equiaffine Frenet frame of a non-degenerate

curve produced by Equation (1.1) is different than the standard equiaffine Frenet frame. This

justifies why we consider the equiaffine invariants instead of Frenet invariants for the use of

fractional derivative in the differential geometry of curves.

The main purpose of this study is to extend the results in [2] to 3-dimensional case

where the authors ([2]) introduced the fractional equiaffine invariants of a non-degenerate

curve in the affine plane R2. Since we use a different formula of derivative instead of the

standard ordinary derivative, we will need a new equiaffine arclength function which differs

by the standard one. The new equiaffine arclength function will depend on the dimension of

affine space and the standard equaffine parameter of given non-degenerate curve. For this,
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we will provide a general formula for the fractional equiaffine arclength function of a non-

degenerate curve in the n−dimensional affine space Rn (n ≥ 2) (see Definition 4.1). Then,

in 3-dimensional context, we introduce the equiaffine Frenet curvatures of fractional type

(see Definition 4.3) and obtain the properties between the fractional and standard equiaffine

curvatures (Theorem 4.1 and Corollaries 4.1 and 4.2). Several examples are also provided by

figures.

2. Fractional tools

Denote by Γ(α) the Euler gamma function depending on the parameter α ∈ R, which it

is defined by ([14])

Γ(α) =

∫ ∞

0
tα−1e−tdt.

Throughout the paper we will assume 0 < α ≤ 1. The Riemann–Liouville fractional

integral of order α for a function f(x) is defined by ([14], [22])

Iα0+f(x) =
1

Γ(α)

∫ x

0

f(ξ)

(x− ξ)1−α
dξ.

The Riemann–Liouville fractional derivative of order α is ([14], [22])

(Dα
0+f)(x) =

d

dx
(I1−α

0+ f)(x) =
1

Γ(1− α)

d

dx

∫ x

0

f(ξ)

(x− ξ)α
dξ.

As can be seen, the Riemann–Liouville fractional derivative uses the ordinary integral of

f(x) and it is a nonlocal operator, i.e. the Riemann–Liouville derivative of f(x) at a point

x0 is determined by nonlocal values of f(x).

The Caputo fractional derivative of order α for a function f(x) is given by ([6])

(Dα
0+f)(x) = I1−α

0+ (
df

dx
)(x) =

1

Γ(1− α)

∫ x

0

1

(x− ξ)α
df(ξ)

dξ
dξ.

Leibniz rule and the derivative of composite function for the Caputo fractional derivative are

respectively defined by ([3])

(Dα
0+fg)(x) =

∞∑
i=0

(
α

i

)
dif

dxi
(Dα−i

x g)(x)− f(0)g(0)

Γ(1− α)
x−α

and

(Dα
0+f)(g(x)) =

∞∑
i=1

(
α

i

)
xi−α

Γ(i− α+ 1)

dif(g(x))

dxi
+

f(g(x))− f(g(0))

Γ(1− α)
x−α. (2.2)

Notice that the simplification (1.1) is obtained by extracting the term i = 1 in the infinite

series in Equation (2.2).
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For simplicity, we will use the following notation throughout the paper:

(Dα
0+f)(x) =

d{α}f

dx{α}
.

3. Equiaffine Invariants

Let Rn denote the n−dimensional affine space (n ≥ 2) and Mat(n,R) be the set of all

square matrices of order n. We set

SL(Rn) = {A ∈ Mat(n,R) : det(A) = 1}.

Then by an equiaffine invariant we mean an unchanged feature under the actions of SL(Rn)

and the translations of Rn. For example, the volume is an equiaffine invariant (see e.g. [7]).

Denote by [u1, . . . , un] the determinant of the vectors u1, . . . , un ∈ Rn where uk represents

the k.-th column. Then the value of [u1, . . . , un] is an equiaffine invariant because it measures

the volume of parallelopipedon determined by u1, . . . , un.

Let t 7→ r(t), t ∈ I ⊂ R, a smooth parametrized curve in Rn. We call the curve r(t)

non-degenerate if, for every t ∈ I, (see [7] and also [12], [13], [18])[
dr

dt
(t), ...,

dnr

dtn
(t)

]
̸= 0.

For simplicity, by a curve we will mean a non-degenerate smooth parametrized curve through-

out the paper. Then the equiaffine arclength function is defined by

σ(t) =

∫ t [ dr
du

(u), ...,
dnr

dun
(u)

]2/(n2+n)

du.

We call that the curve is parametrized by equiaffine arclength if, for every σ ∈ J ⊂ R,[
dr

dσ
(σ), ...,

dnr

dσn
(σ)

]
= 1. (3.3)

The set
{

dr
dσ (σ), ...,

dnr
dσn (σ)

}
is called the equiaffine Frenet frame of r(σ). When we differen-

tiate Equation (3.3) with respect to the parameter σ, we may observe that[
dr

dσ
(σ), ...,

dn−1r

dσn−1
(σ),

dn+1r

dσn+1
(σ)

]
= 0,

where the following set are linearly dependent for every σ ∈ J :{
dr

dσ
(σ), ...,

dn−1r

dσn−1
(σ),

dn+1r

dσn+1
(σ)

}
.

Hence, this gives the existence of smooth functions κi(σ) on J (1 ≤ i ≤ n− 1) such that

dn+1r

dσn+1
(σ) +

n−1∑
i=1

κi(σ)
dir

dσi
(σ) = 0,
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where

κi(σ) = (−1)n−i+1

[
dr

dσ
(σ), ...,

di−1r

dσi−1
(σ),

di+1r

dσi+1
(σ), ...,

dn+1r

dσn+1
(σ)

]
, 1 ≤ i ≤ n− 1.

The function κi(σ) is called i.−th equiaffine curvature of the curve r(σ). The equiaffine

curvatures are the equiaffine invariants in Rn. In 3-dimensional case, that is, in the case

i ∈ {1, 2}, we will use the notations κ1 = κ and κ2 = τ . In additon, the equiaffine Frenet

vectors will be denoted by

T(σ) =
dr

dσ
(σ), N(σ) =

d2r

dσ2
(σ), B(σ) =

d3r

dσ3
(σ).

In consequence, the equiaffine equations of Frenet type are given in matrix form
Ṫ(σ)

Ṅ(σ)

Ḃ(σ)

 =


0 1 0

0 0 1

−κ(σ) −τ(σ) 0



T(σ)

N(σ)

B(σ)

 ,

where Ṫ(σ) is the derivative of T(σ) with respect to the arclength parameter σ.

4. Equiaffine invariants of fractional order

Let r(σ), σ ∈ (a, b), 0 < a < b, be a curve in Rn, n ≥ 2, parametrized by equiaffine

arclength. Again, we consider the simplification (1.1) as

d{α}r

dt{α}
(σ(t)) =

αt1−α

Γ(2− α)

dr

dσ
(σ(t))

dσ

dt
(t). (4.4)

Here α ∈ R with 0 < α ≤ 1 and Equation (4.4) becomes the classical chain rule provided

α = 1.

In the following, by using Equation (4.4) we introduce an equiaffine arclength function of

fractional type.

Definition 4.1. Let r(σ), σ ∈ (a, b), 0 < a < b, be a curve in Rn parametrized by equiaffine

arclength. The following function s(σ) is called equiaffine arclength function of the curve of

order 0 < α ≤ 1

σ 7→ s(σ) =

(
2α+ n− 1

n+ 1

(
α

Γ(2− α)

)2/(n+1)

σ

)(n+1)/(2α+n−1)

. (4.5)

It is obvious from Equation (4.5) that s(σ) is a smooth function of σ on (a, b) and so is

r(s(σ)).
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Proposition 4.1. Let r(s), s ∈ (c, d), 0 < c < d, be a curve in Rn parametrized by equiaffine

arclength of order 0 < α ≤ 1. Then, for every s ∈ (c, d),[
d{α}r

ds{α}
(s),

d

ds

(
d{α}r

ds{α}
(s)

)
, ...,

dn−1

dsn−1

(
d{α}r

ds{α}
(s)

)]
= 1.

Proof. Let σ be the standard equiaffine arclength parameter of r(s). By Equation

(4.5), we have ds/dσ > 0, yielding the existence of the inverse of the function s(σ), namely,

s 7→ σ(s) =
n+ 1

2α+ n− 1

(
α

Γ(2− α)

)−2/(n+1)

s(2α+n−1)/(n+1), (4.6)

where σ(s) is smooth on s ∈ (c, d). Taking derivative in Equation (4.6) with respect to s,

dσ

ds
(s) =

(
α

Γ(2− α)

)−2/(n+1)

s2(α−1)/(n+1). (4.7)

From Equation (4.4) we have

d{α}r

ds{α}
(σ(s)) =

αs1−α

Γ(2− α)

dr

dσ
(σ(s))

dσ

ds
(s). (4.8)

We successively differentiate Equation (4.8) with respect to s, obtaining

d
ds

(
d{α}r
ds{α} (s)

)
= (...) drdσ (σ(s)) +

αs1−α

Γ(2−α)

(
dσ
ds (s)

)2 d2r
dσ2 (σ(s)),

...

dn−1

dsn−1

(
d{α}r
ds{α} (s)

)
= (...) drdσ (σ(s)) + (...) d

2r
dσ2 (σ(s)) + ...+ αs1−α

Γ(2−α)

(
dσ
ds (s)

)n dnr
dσn (σ(s)),

where since we want to find the value of the determinant determined by

d{α}r

ds{α}
(s),

d

ds

(
d{α}r

ds{α}
(s)

)
, ...,

dn−1

dsn−1

(
d{α}r

ds{α}
(s)

)
,

the coefficients denoted by (. . . ) will not effect our calculation. Noticing that r(σ) and σ(s)

are smooth, then the above derivatives exist. Hence,[
d{α}r

ds{α}
(s),

d

ds

(
d{α}r

ds{α}
(s)

)
, ...,

dn−1

dsn−1

(
d{α}r

ds{α}
(s)

)]
=

(
αs1−α

Γ(2− α)

)n(
dσ

ds
(s)

)(n2+n)/2 [ dr
dσ

(σ(s)),
d2r

dσ2
(σ(s)), ...,

dnr

dσ2
(σ(s))

]
.

Because σ is the standard equiaffine arclength parameter, the value of the determinant at

the right hand side is 1, yielding[
d{α}r

ds{α}
(s),

d

ds

(
d{α}r

ds{α}
(s)

)
, ...,

dn−1

dsn−1

(
d{α}r

ds{α}
(s)

)]
=

(
αs1−α

Γ(2− α)

)n(
dσ

ds
(s)

)(n2+n)/2

.

Considering Equation (4.7) into the above last equation, we complete the proof.
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Since we are interested in the 3−dimensional case, then Equation (4.5) is now

s(σ) =

(
α+ 1

2

(
α

Γ(2− α)

)1/2

σ

)2/(α+1)

. (4.9)

Hence,

σ(s) =

(
α

Γ(2− α)

)−1/2 2

α+ 1
s(α+1)/2

and

dσ

ds
(s) =

(
αs1−α

Γ(2− α)

)−1/2

. (4.10)

Definition 4.2. Let r(s), s ∈ (c, d), 0 < c < d, be a curve in R3 parametrized by equiaffine

arclength of order 0 < α ≤ 1. Then, the set
{
T{α}(s),N{α}(s),B{α}(s)

}
is called equiaffine

Frenet frame of r(s) of order α, where

T{α}(s) =
d{α}r

ds{α}
(s), N{α}(s) =

d

ds

(
d{α}r

ds{α}
(s)

)
, B{α}(s) =

d2

ds2

(
d{α}r

ds{α}
(s)

)
.

Note that when α = 1 the set
{
T{α}(s),N{α}(s),B{α}(s)

}
is equivalent to the standard

equiaffine Frenet frame of r(s), that is, T{1} = T, N{1} = N, B{1} = B.

By Proposition 4.1, we have[
T{α}(s),N{α}(s),B{α}(s)

]
= 1. (4.11)

Denote by a prime the ordinary derivative with respect to the parameter s, that is, N{α}(s) =

T{α}′(s) and B{α}(s) = N{α}′(s). Then we differentiate Equation (4.11) with respect to s,

obtaining [
T{α},N{α},B{α}′

]
= 0,

where it can be seen that the set
{
T{α},N{α},B{α}′} is linearly dependent for every s ∈ (c, d).

Then there are some smooth functions on (c, d) denoted by κ{α} and τ{α} such that

κ{α}T{α} + τ{α}N{α} +B{α}′ = 0.

Consequently, we can give the following.

Definition 4.3. Let r(s), s ∈ (c, d), 0 < c < d, be a curve in R3 parametrized by equiaffine

arclength of order 0 < α ≤ 1. Then the functions κ{α}(s) and τ{α}(s) are called the equiaffine

curvatures of r(s) of order α, where

κ{α}(s) = −
[
N{α}(s),B{α}(s),B{α}′(s)

]
(4.12)
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and

τ{α}(s) =
[
T{α}(s),B{α}(s),B{α}′(s)

]
. (4.13)

With this definition, we have the equiaffine Frenet equations of order α given in matrix

form 
T{α}′(s)

N{α}′(s)

B{α}′(s)

 =


0 1 0

0 0 1

−κ{α}(s) −τ{α}(s) 0



T{α}(s)

N{α}(s)

B{α}(s)

 .

We occasionally use the terms of fractional equiaffine arclength, Frenet vector and

curvature instead of the equiaffine arclength, Frenet vector and curvature of order α.

Proposition 4.2. Let r(s), s ∈ (c, d), 0 < c < d, be a curve in R3 parametrized by equiaffine

arclength of order 0 < α ≤ 1. Denote by
{
T{α}(s),N{α}(s),B{α}(s)

}
and {T(σ),N(σ),B(σ)}

the equiaffine Frenet frames of r(s). Then we have
T{α}(s)

N{α}(s)

B{α}(s)

 =


(

αs1−α

Γ(2−α)

)1/2
0 0

1−α
2

(
αs−1−α

Γ(2−α)

)1/2
1 0

α2−1
4

(
αs−3−α

Γ(2−α)

)1/2
1−α
2 s−1

(
αs1−α

Γ(2−α)

)−1/2



T(σ(s))

N(σ(s))

B(σ(s))

 ,

where σ is the standard equiaffine arclength parameter.

Proof. Denote by σ the standard equiaffine parameter. By Equations (4.8) and

(4.10), we write

T{α}(s) =

(
αs1−α

Γ(2− α)

)1/2

T(σ(s)) (4.14)

where T(σ(s)) = dr
dσ (σ(s)). Differentiating Equation (4.14) with respect to s,

N{α}(s) =
1− α

2

(
αs−1−α

Γ(2− α)

)1/2

T(σ(s)) +N(σ(s)) (4.15)

and

B{α}(s) =
α2 − 1

4

(
αs−3−α

Γ(2− α)

)1/2

T(σ(s)) +
1− α

2
s−1N(σ(s)) +

(
αs1−α

Γ(2− α)

)−1/2

B(σ(s)).

(4.16)

The proof is completed by expressing Equations (4.14), (4.15) and (4.16) in matrix form.

Proposition 4.2 indicates the difference between the fractional and standard equiaffine

Frenet vectors. Now, we give the relations between the fractional and standard equiaffine

curvatures.
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Theorem 4.1. Let r(s), s ∈ (c, d), 0 < c < d, be a curve in R3 parametrized by equiaffine

arclength of order 0 < α ≤ 1. The equiaffine curvatures κ{α}(s) and τ{α}(s) of order α are

invariants under the equiaffine transformations of R3. Furthermore, if the standard equiaffine

curvatures of r(s) are denoted by κ(σ) and τ(σ), then the following relations occur

κ{α}(s) =
(3 + α)(−1 + α)

4
s−3 +

(
αs1−α

Γ(2− α)

)−3/2

κ(σ(s))− (1− α)Γ(2− α)

2α
sα−2τ(σ(s))

(4.17)

and

τ{α}(s) =
(3 + α)(1− α)

4
s−2 +

(
αs1−α

Γ(2− α)

)−1

τ(σ(s)). (4.18)

Proof. Since κ{α}(s) and τ{α}(s) are defined by determinants (see Definition 4.3),

those are invariant under the equiaffine transformations of R3. This is the proof of first part.

Differentiating (4.16) with respect to s,

d(B{α})

ds
(s) = p(s)T(σ(s)) + q(s)N(σ(s)), (4.19)

where

p(s) =
(3 + α)(1− α2)

8

(
αs−5−α

Γ(2− α)

)1/2

−
(

αs1−α

Γ(2− α)

)−1

κ(σ(s))

and

q(s) =
(3 + α)(−1 + α)

4
s−2 −

(
αs1−α

Γ(2− α)

)−1

τ(σ(s)).

If we consider Equations (4.15), (4.16) and (4.19) in Equation (4.12), after some manipula-

tions, we derive Equation (4.17). Analogously, Equation (4.18) is obtained by substituting

equations (4.14), (4.16) and (4.19) into (4.13). This completes the proof.

As consequences, we can state the following results.

Corollary 4.1. Let r(s), s ∈ (c, d), 0 < c < d, be a curve in R3 parametrized by equiaffine

arclength of order 0 < α ≤ 1. If the equiaffine curvatures of r(s) vanish identically, then

κ{α}(s) =
(3 + α)(−1 + α)

4
s−3

and

τ{α}(s) =
(3 + α)(1− α)

4
s−2.

Proof. It follows by Equations (4.17) and (4.18).
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Corollary 4.2. Let r(σ), σ ∈ (a, b), 0 < a < b, be a curve in R3 parametrized by equiaffine

arclength. If the equiaffine curvatures of r(σ) of order 0 < α ≤ 1 vanish identically, then

κ(σ) =
(3 + α)(1− α)

(1 + α)2
σ−3 (4.20)

and

τ(σ) = −(3 + α)(1− α)

(1 + α)2
σ−2. (4.21)

Proof. If τ{α}(s) = 0 for every s then from Equation (4.18) we have

τ(σ(s)) =
(3 + α)(−1 + α)

4

(
αs−1−α

Γ(2− α)

)
. (4.22)

Equation (4.21) is obtained by considering Equation (4.9) in Equation (4.22). Analogously,

if κ{α} = 0 for every s then Equation (4.17) is now

κ(σ(s)) =
(3 + α)(1− α)

4

(
αs−1−α

Γ(2− α)

)3/2

+
(1− α)Γ(2− α)

2α

(
αs−(1+α)/3

Γ(2− α)

)3/2

τ(σ(s)).

(4.23)

Substituting Equations (4.9) and (4.21) into Equation (4.23), we derive Equation (4.20).

5. Examples

Example 5.1. Consider in R3 the following curve (see Figure 1)

r(σ) =

(
σ,

σ2

2
,
σ3

3

)
, σ ∈ (a, b), 0 < a < b,

where σ is the equiaffine arclength parameter of r(σ), that is, [T(σ),N(σ),B(σ)] = 1, for

every σ ∈ (a, b). Because B(σ) = (0, 0, 1), the equiaffine curvatures κ(σ) and τ(σ) are

identically 0. By Corollary 4.1, the equiaffine curvatures of the curve of order 0 < α ≤ 1 are

κ{α}(s) = (3+α)(−1+α)/(4s3) and τ{α}(s) = (3+α)(1−α)/(4s2), where s is the equiaffine

arclength parameter of order α. The graphs of the curvature functions κ{α}(s) and τ{α}(s)

can be drawn in Figures 2 and 3 up to different values of α.
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Figure 1. r(σ) =
(
σ, σ

2

2 , σ
3

3

)
, σ ∈ [1/2, 5], with vanishing equiaffine curvatures.

Figure 2. The graphs of κ{α}(s) = (3 + α)(−1 + α)/(4s3), s ∈ [1, 3], in blue

for α = 0.5, in yellow for α = 0.7, in green for α = 0.9 and in red for α = 1.

Figure 3. The graphs of τ{α}(s) = (3 + α)(1 − α)/(4s2), s ∈ [1, 3], in blue

for α = 0.5, in yellow for α = 0.7, in green for α = 0.9 and in red for α = 1.
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Example 5.2. Let 0 < α ≤ 1. We take in R3 the following curve (see Figure 4)

r(s) =
Γ(2− α)

α

(
sα

α
,
sα+1

α+ 1
,

sα+2

2(α+ 2)

)
, s ∈ (c, d), 0 < c < d,

where s is the equiaffine arclength parameter of r(s) of order α, that is,

[T{α}(s),N{α}(s),B{α}(s)] = 1,

for every s ∈ (c, d). Because B{α}(s) = (0, 0, 1), the equiaffine curvatures κ{α}(s) and τ{α}(s)

of order α are identically 0. By Corollary 4.2, the standard equiaffine curvatures of r(s) are

κ(σ) = (3+α)(1−α)(1 +α)−2σ−3 and τ(σ) = −(3 +α)(1−α)(1 +α)−2σ−2, where σ is the

equiaffine arclength parameter (see Figures 5 and 6).

Figure 4. r(s) = Γ(2−α)
α

(
sα

α , s
α+1

α+1 ,
sα+2

2(α+2)

)
, s ∈ [1/2, 5], with vanishing

equiaffine curvatures of order 0 < α ≤ 1. In blue for α = 0.5, in yellow

for α = 0.7, in green for α = 0.9 and in red for α = 1.

Figure 5. The graphs of κ(σ) = (3 + α)(1 − α)(1 + α)−2σ−3, σ ∈ [1, 3], in

blue for α = 0.5, in yellow for α = 0.7, in green for α = 0.9 and in red for

α = 1.
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Figure 6. The graphs of τ(σ) = −(3 + α)(1− α)(1 + α)−2σ−2, σ ∈ [1, 3], in

blue for α = 0.5, in yellow for α = 0.7, in green for α = 0.9 and in red for

α = 1.

6. Discussions

The results of the present study may give new ideas relating to using of fractional derivative

in the differential geometry of curves. For example, when emposing some natural conditions

on curvatures, the classification of curves is a central problem. Or, the extension of results in

3-dimenisonal case to higher dimensions is an important problem again. Hence, the following

two problems can be posed:

(1) The first one is the problem of finding parametric equations of curves when their

fractional curvatures κ{α} and τ{α} are constant. Indeed, solving this problem is

equivalent to solve the following vector differential equation

κ
{α}
0 T{α} + τ

{α}
0 N{α} +B{α}′ = 0, (6.24)

where κ
{α}
0 and τ

{α}
0 are some constants. As an example, we will find the equation

of a curve that satisfies κ
{α}
0 (s) = 0 = τ

{α}
0 (s), for every s. Then Equation (6.24) is

now B{α}′ = 0, or equivalently,

d3

ds3

(
d{α}r

ds{α}

)
= 0.

Integrating,

d{α}r

ds{α}
= a+ bs+ c

s2

2
, (6.25)

where a,b, c ∈ R3. Since
[
T{α},N{α},B{α}] = 1, we may choose that a = (1, 0, 0),

b = (0, 1, 0) and c = (0, 0, 1). Now if we consider Equation (4.4) into Equation (6.25)

then we have

dr

ds
=

Γ(2− α)

α

(
s−1+α, sα, s1+α

)
.
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After integrating the above last equation, up to a translation of R3, we find the

parametrization of the curve that we are looking for. Consequently, the general

solution of the posed problem can be obtained by following the similar steps.

(2) The second idea is to find the relations in higher dimensions between the fractional

and standard equiaffine curvatures, that is, the analogous ones of equations (4.17)

and (4.18). In particular, the main purpose of this problem is to express the relations

into one equation between the fractional and standard equiaffine curvatures. For

this, given a curve r(s) in Rn parametrized by equiaffine arclength of order α then

the i.−th equiaffine curvature of order α can be defined by

κ
{α}
i = (−1)n−i+1

[
d{α}r

ds{α}
, ...,

di−2

dsi−2

(
d{α}r

ds{α}

)
,
di

dsi

(
d{α}r

ds{α}

)
, ...,

dn

dsn

(
d{α}r

ds{α}

)]
,

where i ∈ {1, ..., n− 1}. The problem proposes to establish a unique relation between

κ
{α}
i and κi that holds for some i ∈ {1, ..., n− 1}.

7. Conclusions

The simplification of Caputo fractional derivative given by Equation (1.1) effects the study

of curves in terms of their equiaffine invariants in two ways. Given a curve r(s), then the

first effect is obtaining a different equiaffine Frenet frame of r(s) from the standard one

(Proposition 4.2). This situation is not valid for the Euclidean setting. The second effect

can be seen on the fractional equiaffine curvatures (see Equations (4.17) and (4.18)) where

the value of the terms containing the arclength s take a large value around an initial time

and converges to zero for s → ∞. See also Figures 2 and 3. This intention of the fractional

equiaffine curvatures refers to the memory effect of fractional derivative which is decreasing

for a long period of time ([23]).

As can be observed in the figures of Section 4, as α goes to 1 the geometric notions defined

by using the derivative formula (1) approach to the standard ones. This implies that the

idea proposed in the present study is consistent with the classical theory.
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