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STABILITY OF CERTAIN NEUTRAL TYPE DIFFERENTIAL

EQUATION AND NUMERICAL EXPERIMENT VIA DIFFERENTIAL

TRANSFORM METHOD

YENER ALTUN ID

Abstract. In this study, we obtain both the asymptotically stability and the numerical

solution of first order neutral type differential equation with multiple retarded arguments.

We first obtain sufficient specific conditions expressed in terms of linear matrix inequality

(LMI) using the Lyapunov method to establish the asymptotic stability of solutions. Sec-

ondly, we use the differential transform method (DTM) to show numerical solutions. Finally,

two examples are presented to demonstrate the effectiveness and applicability of proposed

methods by Matlab and an appropriate computer program.
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1. Introduction

The different particular cases of delay differential equations have been searched by many

researchers for the past few decades. Recently, it can be seen from the related literature

that qualitative properties of various neutral differential equations have been investigated by

many authors and the researchers have obtained many interesting and important results on

some qualitative properties such as stability, exponentially stability, asymptotically stability,

oscillation, non-oscillations of solutions and etc.(see,[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]).

DTM, which is a semi-analytical-numerical technique, is based on the Taylor series ex-

pansion. The concept of method was first introduced by Pukhov [15] to solve linear and

nonlinear problems in physical processes, and by Zhou [16] to study electrical circuits. This
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method is advantageous in obtaining numerical, analytical and exact solutions of ordinary

and partial differential equations it has been widely studied and applied in recent years

(see,[17, 18, 19, 20, 21, 22, 23, 24, 25]). According to the current techniques in the literature,

DTM is a reliable method that requires less work and does not require linearization.

In this study, we consider the following first order neutral type differential equation with

multiple retarded arguments:

d

dt
[x(t) + p(t)x(t− τ)] + a(t)f(x(t)) + b(t)g(x(t− σ)) + c(t)

∫ t

t−δ
x(s)ds = 0, (1.1)

where p(t), a(t), b(t), c(t) : [t0,∞) → [0,∞), t0 ≥ 0, and f, g : ℜ → ℜ with f(0) = 0, g(0) =

0 are continuous functions on their respective domains;τ, σ and δ are positive real constants.

For each solution x(t) of equation 1.1, we assume the existence following initial condition:

x(θ) = Φ(θ), θ ∈ [t0 −H, t0],

where Φ ∈ C([t0 −H, t0], R), H = max{τ, σ, δ}.

Define

h1(x) =


h(x)
x , x ̸= 0

dh(0)
dt , x = 0

(1.2)

and

g1(x) =


g(x)
x , x ̸= 0

dg(0)
dt , x = 0.

(1.3)

The main purpose and contribution of this work can be summarized as follows aspects:

i. This research on the stability of certain neutral type differential equation and their

numerical solutions is still at the stage of developing. Therefore, we propose a novel

stability criterion for further improvements.

ii. The proof technique for the asymptotically stability of the equation considered in this

study includes the Lyapunov function method and the LMI technique. Also, DTM

is used to obtain numerical solutions of the equation considered.

iii. The simulations showing the behaviors of the solutions of the equation addressed by

applying the Lyapunov method and the numerical solutions of the equation addressed

using DTM show that the proposed methods are useful and efficient.
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2. Preliminaries and stability results

We suppose that there exist nonnegative constants ai, bi, ci,mi, ni (i = 1, 2) and p1 such

that for t ≥ 0,

a1 ≤ a(t) ≤ a2, b1 ≤ b(t) ≤ b2, c1 ≤ c(t) ≤ c2, (2.4)

|p(t)| ≤ p1 < 1, m1 ≤ f1(x) ≤ m2, n1 ≤ g1(x) ≤ n2. (2.5)

For convenience, define the operator D : ℜ → ℜ as

D(xt) = x(t) + p(t)x(t− τ)− α

∫ t

t−τ
x(s)ds− β

∫ t

t−σ
x(s)ds,

where α ve β are positive scalars to be chosen later. From 1.2 and 1.3, equation 1.1 can be

readily rewritten as follows for t ≥ 0,

d

dt
[x(t) + p(t)x(t− τ)− α

∫ t

t−τ
x(s)ds− β

∫ t

t−σ
x(s)ds] = −(f1(x)a(t) + α+ β)x(t)

+αx(t− τ) + βx(t− σ)− g1(x(t− σ))b(t)x(t− σ)− c(t)

t∫
t−δ

x(s)ds. (2.6)

Theorem 2.1. Let ai, bi, ci, mi and ni (i = 1, 2) be nonnegative constants. Then trivial

solution of neutral type differential equation 2.6 is asymptotically stability if the operator D

is stable and there exist positive constants τ, σ, δ, α, β and λj (j = 1, 2, . . . , 5) such that

Π =



Π11 Π12 β − n1b1 Π14 Π15 −c1

∗ Π22 Π23 −α2 −αβ −p1c1

∗ ∗ −λ2 Π34 Π35 0

∗ ∗ ∗ −λ3 0 αc2

∗ ∗ ∗ ∗ −λ4 βc2

∗ ∗ ∗ ∗ ∗ −λ5


< 0, (2.7)

where Π11 = −2(m1a1 +α+ β) + λ1 + λ2 + λ3τ
2 + λ4σ

2 + λ5δ
2,Π12 = α− (m1a1 +α+ β)p1,

Π14 = m2a2α + α2 + αβ,Π15 = m2a2β + αβ + β2,Π22 = 2αp1 − λ1,Π23 = βp1 − n1b1p1,

Π34 = −αβ + αn2b2,Π35 = −β2 + βn2b2 and the symbols “∗” shows the elements below the

main diagonal of the symmetric matrix Π .
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Proof. Consider the appropriate Lyapunov functional as

V (t) =[D(xt)]
2 + λ1

∫ t

t−τ
x2(s)ds+ λ2

∫ t

t−σ
x2(s)ds+ λ3τ

∫ t

t−τ
(τ − t+ s)x2(s)ds

+ λ4σ

∫ t

t−σ
(σ − t+ s)x2(s)ds+ λ5δ

∫ t

t−δ
(δ − t+ s)x2(s)ds,

where D(xt) = x(t) + p(t)x(t− τ)− α
t∫

t−τ

x(s)ds− β
t∫

t−σ

x(s)ds.

When the time derivative of V (t) along the trajectory of equation 2.6 are calculate, we

obtain

dV

dt
=2[x(t) + p(t)x(t− τ)− α

∫ t

t−τ
x(s)ds− β

∫ t

t−σ
x(s)ds]

× [−(f1(x)a(t) + α+ β)x(t) + αx(t− τ) + βx(t− σ)

− g1(x(t− σ))b(t)x(t− σ)− c(t)

∫ t

t−δ
x(s)ds] + λ1[x

2(t)− x2(t− τ)]

+ λ2[x
2(t)− x2(t− σ)] + λ3τ

2x2(t)− λ3τ

∫ t

t−τ
x2(s)ds

+ λ4σ
2x2(t)− λ4σ

∫ t

t−σ
x2(s)ds+ λ5δ

2x2(t)− λ5δ

∫ t

t−δ
x2(s)ds

=(−2f1(x)a(t)− 2α− 2β + λ1 + λ2 + λ3τ
2 + λ4σ

2 + λ5δ
2)x2(t)

+ 2αx(t)x(t− τ) + 2βx(t)x(t− σ)− 2g1(x(t− σ))b(t)x(t)x(t− σ)

− 2c(t)x(t)

∫ t

t−δ
x(s)ds− 2(f1(x)a(t) + α+ β)p(t)x(t)x(t− τ)

+ 2αp(t)x2(t− τ) + 2βp(t)x(t− τ)x(t− σ)

− 2g1(x(t− σ))b(t)p(t)x(t− τ)x(t− σ)− 2p(t)c(t)x(t− τ)

∫ t

t−δ
x(s)ds

+ 2(f1(x)a(t) + α+ β)αx(t)

∫ t

t−τ
x(s)ds− 2α2x(t− τ)

∫ t

t−τ
x(s)ds

− 2αβx(t− σ)

∫ t

t−τ
x(s)ds+ 2αg1(x(t− σ))b(t)x(t− σ)

∫ t

t−τ
x(s)ds

+ 2αc(t)

∫ t

t−τ
x(s)ds

∫ t

t−δ
x(s)ds+ 2(f1(x)a(t) + α+ β)βx(t)

∫ t

t−σ
x(s)ds

− 2αβx(t− τ)

∫ t

t−σ
x(s)ds− 2β2x(t− σ)

∫ t

t−σ
x(s)ds

+ 2βg1(x(t− σ))b(t)x(t− σ)

∫ t

t−σ
x(s)ds+ 2βc(t)

t∫
t−σ

x(s)ds

∫ t

t−δ
x(s)ds
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− λ1x
2(t− τ)− λ2x

2(t− σ)− λ3τ

t∫
t−τ

x2(s)ds− λ4σ

t∫
t−σ

x2(s)ds

− λ5δ

∫ t

t−δ
x2(s)ds.

By using hölder inequality we can easily see that

τ

∫ t

t−τ
x2(s)ds ≥

(∫ t

t−τ
x(s)ds

)2

,

σ

∫ t

t−σ
x2(s)ds ≥

(∫ t

t−σ
x(s)ds

)2

,

δ

∫ t

t−δ
x2(s)ds ≥

(∫ t

t−δ
x(s)ds

)2

.

Taking into account conditions 2.4 and 2.5, we have

dV

dt
≤(−2m1a1 − 2α− 2β + λ1 + λ2 + λ3τ

2 + λ4σ
2 + λ5δ

2)x2(t)

+ [2α− 2(m1a1 + α+ β)p1]x(t)x(t− τ) + (2β − 2n1b1)x(t)x(t− σ)

− 2c1x(t)

t∫
t−δ

x(s)ds+ (2αp1 − λ1)x
2(t− τ)

+ (2βp1 − 2n1b1p1)x(t− τ)x(t− σ)− 2p1c1x(t− τ)

∫ t

t−δ
x(s)ds

+ 2(m2a2α+ α2 + αβ)x(t)

∫ t

t−τ
x(s)ds− 2α2x(t− τ)

∫ t

t−τ
x(s)ds

− (2αβ − 2αn2b2)x(t− σ)

∫ t

t−τ
x(s)ds+ 2αc2

∫ t

t−τ
x(s)ds

∫ t

t−δ
x(s)ds

+ 2βc2

∫ t

t−σ
x(s)ds

∫ t

t−δ
x(s)ds+ 2(m2a2β + αβ + β2)x(t)

∫ t

t−σ
x(s)ds

− 2αβx(t− τ)

∫ t

t−σ
x(s)ds− λ2x

2(t− σ)− (2β2 − 2βn2b2)x(t− σ)

∫ t

t−σ
x(s)ds

− λ3

(∫ t

t−τ
x(s)ds

)2

− λ4

(∫ t

t−σ
x(s)ds

)2

− λ5

(∫ t

t−δ
x(s)ds

)2

.

The last estimate implies that

dV

dt
≤ ξT (t)Πξ(t),

where ξT (t) =

[
x(t) x(t− τ) x(t− σ)

t∫
t−τ

x(s)ds
t∫

t−σ

x(s)ds
t∫

t−δ

x(s)ds

]
and Π is de-

fined in 2.7. Thus, 2.7 implied that there exists a positive constant µ > 0 such that

dV
dt ≤ −µ ∥D(xt)∥ . Therefore, equation 2.6 is asymptotically stable according to [[8],Theorem

8.1, pp. 292–293]. This completes the proof.
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Example 2.1. Consider neutral differential equation 2.6 with

a1 = a2 = 1, b1 = b2 = 0.5, c1 = c2 = 0,m1 = m2 = 2, n1 = n2 = 0.4, |p(t)| ≤ p1 = 0.25 < 1,

(2.8)

τ = 0.2, σ = 0.4., δ = 0.3, α = 0.1, β = 0.3, λ1 = 1.6, λ2 = λ3 = 1.2, , λ4 = 0.8, λ5 = 1.5.

(2.9)

Under the above assumptions, by solving matrix inequality 2.7 using Matlab, we found that

the all eigenvalues of this matrix are -0.3125, -1.1539, -1.1931, -1.4085, -1.5000 and -2.3669.

As a result, it is clear that all the conditions of Theorem 2.1 hold. This discussion implies

that the zero solution of equation 2.6 is asymptotically stable.

Figure 1. The simulation of the Example 2.1.

3. DTM and Numerical Experiment

The theory of DT can be found in [15, 16]. In this research paper, we will explain briefly.

The DT of function x(t) is defined as

X (k) =
1

k!

[
dkx (t)

dtk

]
t=0

, (3.10)

where x(t)is the original function and X(k) is the transformed function.

Differential inverse transform of X(k) is defined as

x (t) =

∞∑
k=0

tk

k!

[
dkx (t)

dtk

]
t=0

. (3.11)
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From 3.10 and 3.11, if the function x(t) can be expressed in a finite series as follows

x (t) =
∞∑
k=0

X (k) tk = X (0) +X (1) t+X (2) t2 + . . . , (3.12)

then it is called series solution of the DTM.

The following fundamental theorems can be easily deduced from equations 3.10 and 3.11

(also see,[17],[20]).

Theorem 3.1. If x (t) = dx(t)
dt ,then X (k) = (k+1)!

k! X (k + 1) = (k + 1)X (k + 1) .

Theorem 3.2. If x(t) = αx(t), then X(k) = αX(k),where α is a constant.

Theorem 3.3. If x(t) = x(t− a), a > 0 and reel constant, then

X (k) =

N∑
i=k

(−1)i−k

 i

k

 ai−kX (i) .

Theorem 3.4. If d
dtx (t− a) , then X (k) = (k + 1)

N∑
i=k+1

(−1)i−k−1

 i

k + 1

 ai−k−1X (i) .

Theorem 3.5. If x (t) =
∫ t
t0
x (s)ds, then X (k) = X(k−1)

k , k ≥ 1, X (0) = 0.

Now, we demonstrate potentiality, advantages and effectiveness of our method on an

example.

Example 3.1. Under initial condition x (0) = 2.5, we consider the first order neutral differ-

ential equation 2.6 with 2.8 and 2.9. Taking into account Theorem 3.1 - 3.5, applying DTM

on both sides of equation 3.10 and condition 3.11, we obtain the following recurrence relation

X (0) =2.5,

(k + 1)X (k + 1) =[−0.25 (k + 1)

N∑
i=k+1

(−1)i−k−1

 i

k + 1

 0.2i−k−1X (i)− 2X (k)

− 0.2
N∑
i=k

(−1)i−k

 i

k

 0.4i−kX (i)], k = 0, 1, ..., 6.

Using this recurrence relation, the following series coefficients X(k) can be obtained.

For N = 4,

X(1) =-4.256423713, X(2)=4.173891756, X(3)=-3.190591724, X(4)=2.211301195,

X(5) =-1.326780717, X(6)=0.4422602390, X(7)=-0.1263600683, k = 0, 1, ..., 6.
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For N = 6,

X(1) =-4.256931168, X(2)=4.169113047, X(3)=-3.134489650, X(4)=2.052537892,

X(5) =-1.272263766, X(6)=0.7624052530, X(7)=-0.3703111229, k = 0, 1, ..., 6.

For N = 8,

X(1) =-4.256957370, X(2)=4.169240023, X(3)=-3.133772360, X(4)=2.045844921,

X(5) =-1.257197863, X(6)=0.7759998430, X(7)=-0.4899948359, k = 0, 1, ..., 6.

Finally, using above mentioned relations, taking N = 4, 6, 8 and using equation 3.12,

we reach approximate solutions of equation 2.6 with 7 iterations as follows:

N = 4,

xDTM (t) =2.5− 4.256423713t+ 4.173891756t2 − 3.190591724t3 + 2.211301195t4

− 1.326780717t5 + 4.422602390t6 − 1.263600683t7,

N = 6,

xDTM (t) =2.5− 4.256931168t+ 4.169113047t2 − 3.134489650t3 + 2.052537892t4

− 1.272263766t5 + 7.624052530t6 − 3.703111229t7,

N = 8,

xDTM (t) =2.5− 4.256957370t+ 4169240023t2 − 3.133772360t3 + 2.045844921t4

− 1.257197863t5 + 7.759998430t6 − 4.899948359t7.

As a result, it is seen that in the cases of N = 4, N = 6 and N = 8, our numerical

results are almost the same.
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Figure 2. Comparison between approximate solutions using DTM.

Table 1. Comparison of numerical results obtained with DTM.

t N = 4 N = 6 N = 8

0.0 2.5 2.5 2.5

0.1 2.113114246 2.113056779 2.113055630

0.2 1.793286393 1.793223362 1.793222389

0.3 1.527559403 1.527518365 1.527507432

0.4 1.305682872 1.305711365 1.305609636

0.5 1.119104674 1.119546373 1.118984564

0.6 0.960089977 0.961954349 0.959727281

0.7 0.820903961 0.826068104 0.819026077

0.8 0.692994495 0.703852936 0.684940092

0.9 0.566111176 0.584166389 0.539253944

1.0 0.427296967 0.450060485 0.353162358

4. Conclusions

In this study, we first derived some novel sufficient conditions to prove the asymptotic

stability of solutions the first order neutral type differential equation. Subsequently, using
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DTM, we obtained numerical approximations for different N ve t by an appropriate computer

program. We constructed the Table 1 to make a comparison between the numerical results

for N = 4, N = 6 and N = 8. By Matlab and an appropriate computer program, we

provided two examples to show the effectiveness of proposed method. When the simulations

of Example 2.1 and Example 3.1 are examined, the obtained results shows that the proposed

methods are useful and applicable. As a suggestion, the techniques and methods presented

for equation 1.1 can be improved with different situational or time-dependent delays.
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