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WEYL CONNECTION ON TANGENT BUNDLE OF HYPERSURFACE
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Abstract. In this paper, we determine the complete lift of weyl connection to tangent

bundle of hypersurface. And we obtain some certain results regarding to the tangent bun-

dle.
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1. Introduction

Let M be an m−dimensional Riemannian manifold with a linear connection ∇̂. Wong

obtained some properties of a recurrent tensor field K of type (r, s) on a manifold M endowed

with a linear connection ∇̂. A non zero tensor field K on manifold M is said to be recurrent

if there exist a 1-form such that ∇̂K = ω⊗K [15]. An linear connection ∇ on a Riemannian

manifold with Riemannian metric ĝ is called a recurrent metric connection if there exist a

diferentiable 1-form ω such that

(
∇

X̂
ĝ
) (
Ŷ , Ẑ

)
= ω̂

(
X̂
)
ĝ
(
Ŷ , Ẑ

)
for any vector fields X̂, Ŷ , Ẑ in M , ω is called the 1-form of recurrence [10]. The torsion

tensor T̂ of ∇̂ is given by

T̂
(
X̂, Ŷ

)
= ∇̂

X̂
Ŷ − ∇̂

Ŷ
X̂ −

[
X̂, Ŷ

]
(1.1)
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for any vector fields X̂ and Ŷ in M . The connection ∇̂ is symmetric if its torsion tensor

T̂ vanishes, i.e., T̂ = 0. Then the symmetric ∇ connection is called a symmetric recurrent

metric connection on M . The Weyl connection is constructed with ω̂ and P̂ and given by

[5], [14]

∇
X̂
Ŷ = ∇̂

X̂
Ŷ − 1

2

(
ω̂
(
X̂
)
Ŷ + ω̂

(
Ŷ
)
X̂ − ĝ

(
X̂, Ŷ

)
P̂
)

(1.2)

which satifies

(
∇

X̂
ĝ
) (
Ŷ , Ẑ

)
= ω̂

(
X̂
)
ĝ
(
Ŷ , Ẑ

)
(1.3)

for any vector fields X̂ and Ŷ in (M, ĝ), where ∇̂ is a Riemannian connnection in (M, ĝ)

and P̂ is a vector field defined by ĝ
(
P̂ , X̂

)
= ω̂

(
X̂
)

. The Weyl connection is a symmetric

recurrent metric connection. The Weyl connection have been studied many authors [2], [6],

[12].

The study of differential geometry of tangent bundles was started in the early 1960s. The

prolongations called complete, vertical and horizontal lifts of tensor field and connection to

tangent bundle have been studied by Yano and Ishihara [17]. The tangent bundle have been

studied many authors [3], [9], [13], [16]. Tani [11] improved the theory of hypersurfaces

prolonged to tangent bundle with respect to the complete lift of metric tensor of Riemannian

manifold. Gözütok and Esin [4] have studied the complete lift of semi-symmetric metric

connection to tangent bundle of the hypersurfaces. Khan and his collaborators [7], [8] have

studied lifts of quarter-symmetric semi-metric and semi-symmetric semi-metric connections

to tangent bundle of the hypersurfaces. This paper is devoted to the study the complete lift

of Weyl connection to tangent bundle of the hypersurfaces. And we find certain results on

totally umbilical and geodesic to the tangent bundle.

2. Preliminaries

Let M be a Riemannian manifold and we denote by T (M) it is tangent bundle with the

projection πM : T (M) → M and by Tp (M) its tangent space at a point p of M . =r
s (M) is

the set of all tensor fields of type (r, s) in M .

Let f, t ∈ =0
0 (M), X ∈ =1

0 (M), ω ∈ =0
1 (M), ϕ ∈ =1

1 (M), g ∈ =0
2 (M), T ∈ =1

2 (M) be a

function, a vector field, a 1-form, type- (1, 1), type-(0, 2), type-(1, 2) tensor field, respectively.

We denote, respectively, by V f , VX, V ω, V ϕ, V g, V T their vertical lifts and by Cf , CX, Cω,
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Cϕ, Cg, CT their complete lifts. This lifts have the properties [17]:[
CX̂,C Ŷ

]
= C

[
X̂, Ŷ

]
Cϕ̂
(
CX̂
)

= C
(
ϕ̂
(
X̂
))

V ω̂
(
CX̂
)

= V
(
ω̂
(
X̂
))

C ω̂
(
CX̂
)

= C
(
ω̂
(
X̂
))

C ĝ
(
V X̂,C Ŷ

)
= C ĝ

(
CX̂,V Ŷ

)
= V

(
ĝ
(
X̂, Ŷ

))
C ĝ
(
CX̂,C Ŷ

)
= C

(
ĝ
(
X̂, Ŷ

))
C∇̂CX̂

C Ŷ = C
(
∇̂

X̂
Ŷ
)

C∇̂CX̂
V Ŷ = V

(
∇̂

X̂
Ŷ
)

C T̂
(
CX̂,C Ŷ

)
= C

(
T̂
(
X̂, Ŷ

))
Cf V t+ V f Ct = C (ft) .

(2.4)

Let S be an manifold with dimension (m− 1) imbedded differentially as a submanifold in

(M, ĝ) and denote by ı : S →M its imbedding [11]. The differential mapping dı is a mapping

from TS into TM , which is called the tangent map of ı, where TS and TM are the tangent

bundles of S and M , respectively. The tangent map dı is denoted by B. The tangent map

of B is denoted by B̃ : T (TS)→ T (TM).

The hypersurface S is also a Riemannian manifold with the induced metric g defined by

g (X,Y ) = ĝ (BX,BY ) for arbitrary X, Y ∈ =1
0 (S). Thus, ∇ is Riemannian connection with

the induced connection on (S, g) from ∇̂ defined by

∇̂BX BY = B (∇XY ) + h (X,Y )N (2.5)

for any X, Y ∈ =1
0 (S), where N is unit normal vector field on (S, g) and h is the second

fundamental tensor field of (S, g) [11]. Also, the following equality

h (X,Y ) = g (HX,Y )

for any X, Y ∈ =1
0 (S), where H ∈ =1

1 (S).

If h is equal to zero, S is called totally geodesic with respect to ∇ and if h is proportional

to g, then S is called totally umbilical with respect to ∇ [11].

3. Weyl connection on tangent bundle of hypersurface

◦
∇ is a Weyl connection induced on the hypersurface S from ∇, which satisfies the equation

∇BX BY = B

(
◦
∇XY

)
+m (X,Y )N (3.6)
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for X, Y ∈ =1
0 (S), where m is a type-(0, 2) tensor field in S. Defining M = H − ηI, we

obtain the equality

m (X,Y ) = g (MX,Y ) (3.7)

for any X, Y ∈ =1
0 (S), where I is the unit type-(1, 1) tensor field in S.

If m is equal to zero, then S is called totally geodesic with respect to
◦
∇ and if m is

proportional to g, then S is called totally umbilical with respect to
◦
∇.

Theorem 3.1. The connection induced on a hypersurface S of a Riemannian manifold with

a Weyl connection with respect to the unit normal is also a Weyl connection.

Proof. From (1.2) we obtain

∇BX BY = ∇̂BX BY − 1

2

(
ω̂ (BX)BY + ω̂ (BY )BX − ĝ (BX,BY ) P̂

)
(3.8)

for arbitrary vector fields X,Y ∈ S. From equations (2.5), (3.6), (3.8),

B

(
◦
∇XY

)
+m (X,Y )N = B (∇XY ) + h (X,Y )N − 1

2
ω̂ (BX)BY (3.9)

−1

2
ω̂ (BY )BX +

1

2
ĝ (BX,BY ) (BP + ηN)

where we put P̂ = BP + ηN , where η is a function, P is a vector field and ω is a 1-form in

S determined by ω (X) = ω̂ (BX).

By taking the tangential and normal parts from both the sides, we get, respectively,

◦
∇XY = ∇XY −

1

2
(ω (X)Y + ω (Y )X − g (X,Y )P ) ,

m (X,Y ) = h (X,Y ) +
1

2
ηg (X,Y ) .

The complete lift C ĝ of Riemannian metric ĝ is the pseudo-Riemannian metric in TM .

Therefore, if we denote by g̃ the induced metric on TS from C ĝ , then

g̃
(
CX,C Y

)
= C ĝ

(
B̃ CX, B̃ CY

)
for arbitrary vector fields X,Y ∈ =1

0 (S).

Thus, the complete lift C∇̂ of the Riemannian connection ∇̂ in (M, ĝ) is the Riemannian

connection in the pseudo-Riemannian manifold
(
TM,C ĝ

)
. The complete lift C∇ of the

induced connection ∇ on (S, g) is also the Riemannian connection in (T (S) , g̃).

Theorem 3.2. If T̂ is torsion tensor of ∇̂ in (M, ĝ), then C T̂ is torsion tensor of C∇̂ in(
TM,C ĝ

)
[17].
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Now we obtain the main theorem of this study.

Theorem 3.3. Let ∇ a Weyl connection with respect to ∇̂ Riemannian connection in (M, ĝ).

Then, C∇ is also a Weyl connection with respect to C∇̂ Riemannian connection in
(
TM,C ĝ

)
.

Proof. Firstly, let’s show that V ω̂
(
B̃ CX

)
= V (ω̂ (BX)) and C ω̂

(
B̃ CX

)
= C (ω̂ (BX)).

In [11], using V (BX) = B̃ VX and C (BX) = B̃ CX for X ∈ =1
0 (S) we get

V ω̂
(
B̃ CX

)
= V ω̂ C (BX) = ]

(
V ω̂

(
CX̂
))

= ] V
(
ω̂
(
X̂
))

= V (ω̂ (BX)) ,

C ω̂
(
B̃ CX

)
= C ω̂ C (BX) = ]

(
C ω̂

(
CX̂
))

= ] C
(
ω̂
(
X̂
))

= C (ω̂ (BX))

for arbitrary X,Y ∈ =1
0 (S). Here, we denote the operation of restriciton to π−1

M (ı (S)) by

]. Also, we denote the vertical and complete lift operations on π−1
M (ı (S)) by V and C,

respectively. Now taking the complete lift of both sides of the equation (1.2) and using the

equations (2.4) we get

C
(
∇BX BY

)
= C

(
∇̂BX BY

)
− 1

2
C (ω̂ (BX) (BY ))− 1

2
C (ω̂ (BY ) (BX))

+
1

2
C
(
ĝ (BX,BY ) P̂

)

C
(
∇BX BY

)
= C

(
∇̂BX BY

)
− 1

2
C (ω̂ (BX)) V (BY )− 1

2
V (ω̂ (BX)) C (BY )

−1

2
C (ω̂ (BY )) V (BX)− 1

2
V (ω̂ (BY )) C (BX)

+
1

2
C (ĝ (BX,BY )) V P̂ +

1

2
V (ĝ (BX,BY )) C P̂

C∇
B̃ CX

B̃ CY = C∇̂
B̃ CX

B̃ CY − 1

2
C ω̂
(
B̃ CX

)(
B̃ V Y

)
− 1

2
V ω̂
(
B̃ CX

)(
B̃ CY

)
−1

2
C ω̂
(
B̃ CY

)(
B̃ VX

)
− 1

2
V ω̂
(
B̃ CY

)(
B̃ CX

)
+

1

2
C ĝ
(
B̃ CX, B̃ CY

)
V P̂ +

1

2
C ĝ
(
B̃ VX, B̃ CY

)
C P̂

and

C∇
B̃ CY

B̃ CX = C∇̂
B̃ CY

B̃ CX − 1

2
C ω̂
(
B̃ CY

)(
B̃ VX

)
− 1

2
V ω̂
(
B̃ CY

)(
B̃ CX

)
−1

2
C ω̂
(
B̃ CX

)(
B̃ V Y

)
− 1

2
V ω̂
(
B̃ CX

)(
B̃ CY

)
+

1

2
C ĝ
(
B̃ CY, B̃ CX

)
V P̂ +

1

2
C ĝ
(
B̃ V Y, B̃ CX

)
C P̂ .
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Then, we have

CT
(
B̃ CX, B̃ CY

)
= C∇

B̃ CX
B̃ CY − C∇

B̃ CY
B̃ CX −

[
B̃ CX, B̃ CY

]
= C∇̂

B̃ CX
B̃ CY − C∇̂

B̃ CY
B̃ CX −

[
B̃ CX, B̃ CY

]
= C T̂

(
B̃ CX, B̃ CY

)
= C

(
T̂ (BX,BY )

)
= 0.

By computing

C ĝ
(
C∇

B̃ CX
B̃ CY, B̃ CZ

)
+ C ĝ

(
B̃ CY, C∇

B̃ CX
B̃ CZ

)
= C ĝ( C∇̂

B̃ CX
B̃ CY − 1

2
C ω̂
(
B̃ CX

)(
B̃ V Y

)
− 1

2
V ω̂
(
B̃ CX

)(
B̃ CY

)
−1

2
C ω̂
(
B̃ CY

)(
B̃ VX

)
− 1

2
V ω̂
(
B̃ CY

)(
B̃ CX

)
+

1

2
C ĝ
(
B̃ CX, B̃ CY

)
V P̂ +

1

2
C ĝ
(
B̃ VX, B̃ CY

)
C P̂ , B̃ CZ)

+ C ĝ( B̃ CY, C∇̂
B̃ CX

B̃ CZ − 1

2
C ω̂
(
B̃ CX

)(
B̃ V Z

)
−1

2
V ω̂
(
B̃ CX

)(
B̃ CZ

)
− 1

2
C ω̂
(
B̃ CZ

)(
B̃ VX

)
−1

2
V ω̂
(
B̃ CZ

)(
B̃ CX

)
+

1

2
C ĝ
(
B̃ CX, B̃ CZ

)
V P̂

+
1

2
C ĝ
(
B̃ VX, B̃ CZ

)
C P̂ )

= C ĝ
(
C∇̂

B̃ CX
B̃ CY, B̃ CZ

)
+ C ĝ

(
B̃ CY, C∇̂

B̃ CX
B̃ CZ

)
−1

2
C (ω̂ (BX)) C ĝ

(
B̃ V Y, B̃ CZ

)
− 1

2
V (ω̂ (BX)) C ĝ

(
B̃ CY, B̃ CZ

)
−1

2
C (ω̂ (BY )) C ĝ

(
B̃ VX, B̃ CZ

)
− 1

2
V (ω̂ (BY )) C ĝ

(
B̃ CX, B̃ CZ

)
−1

2
C (ω̂ (BX)) C ĝ

(
B̃ CY, B̃ V Z

)
− 1

2
V (ω̂ (BX)) C ĝ

(
B̃ CY, B̃ CZ

)
−1

2
C (ω̂ (BZ)) C ĝ

(
B̃ CY, B̃ VX

)
− 1

2
V (ω̂ (BZ)) C ĝ

(
B̃ CY, B̃ CX

)
+

1

2
C ĝ
(
B̃ CX, B̃ CY

)
C ĝ
(
V P̂ , B̃ CZ

)
+

1

2
C ĝ
(
B̃ VX, B̃ CY

)
C ĝ
(
C P̂ , B̃ CZ

)
+

1

2
C ĝ
(
B̃ CX, B̃ CZ

)
C ĝ
(
B̃ CY, V P̂

)
+

1

2
C ĝ
(
B̃ VX, B̃ CZ

)
C ĝ
(
B̃ CY, C P̂

)
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= C ĝ
(
C∇̂

B̃ CX
B̃ CY, B̃ CZ

)
+ C ĝ

(
B̃ CY, C∇̂

B̃ CX
B̃ CZ

)
−1

2
C (ω̂ (BX)) V (ĝ (BY, BZ))− 1

2
V (ω̂ (BX)) C (ĝ (BY, BZ))

−1

2
C (ω̂ (BY )) V (ĝ (BX, BZ))− 1

2
V (ω̂ (BY )) C (ĝ (BX, BZ))

−1

2
C (ω̂ (BX)) V (ĝ (BY, BZ))− 1

2
V (ω̂ (BX)) C (ĝ (BY, BZ))

−1

2
C (ω̂ (BZ)) V (ĝ (BY, BX))− 1

2
V (ω̂ (BZ)) C (ĝ (BY, BX))

+
1

2
C (ĝ ( BX, BY )) V (ω̂ (BZ)) +

1

2
V (ĝ ( BX, BY )) C (ω̂ (BZ))

+
1

2
C (ĝ ( BX, BZ)) V (ω̂ (BY )) +

1

2
V (ĝ ( BX, BZ)) C (ω̂ (BY ))

= C ĝ
(
C∇̂

B̃ CX
B̃ CY, B̃ CZ

)
+ C ĝ

(
B̃ CY, C∇̂

B̃ CX
B̃ CZ

)
− C (ω̂ (BX)) V (ĝ (BY, BZ))− V (ω̂ (BX)) C (ĝ (BY, BZ))

= C ĝ
(
C∇̂

B̃ CX
B̃ CY, B̃ CZ

)
+ C ĝ

(
B̃ CY, C∇̂

B̃ CX
B̃ CZ

)
− C (ω̂ (BX) ĝ (BY, BZ))

=
(
B̃ CX

)
C ĝ
(
B̃ CY, B̃ CZ

)
− C (ω̂ (BX) ĝ (BY, BZ))

And from following equation(
B̃ CX

)
C ĝ
(
B̃ CY, B̃ CZ

)
=

(
C∇

B̃ CX
C ĝ
) (
B̃ CY, B̃ CZ

)
+ C ĝ

(
C∇

B̃ CX
B̃ CY, B̃ CZ

)
+ C ĝ

(
B̃ CY, C∇

B̃ CX
B̃ CZ

)
we get (

C∇
B̃ CX

C ĝ
) (
B̃ CY, B̃ CZ

)
= C (ω̂ (BX) ĝ (BY, BZ)) .

Theorem 3.4. Let
◦
∇ be a Weyl connection with respect to ∇ Riemannian connection in

(S, g). Then C
◦
∇ is also Weyl connection with respect to C∇ Riemannian connection in

(TS, g̃).

Proof. Taking the complete lift on both the sides of equation (3.8) and using equations

(2.4), we get

C
(
∇BX BY

)
= C

(
∇̂BX BY

)
− 1

2
C (ω̂ (BX)BY )− 1

2
C (ω̂ (BY )BX)

+
1

2
C
(
ĝ (BX,BY ) P̂

)
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C
(
∇BX BY

)
= C

(
∇̂BX BY

)
− 1

2
C (ω̂ (BX)) V (BY )

−1

2
V (ω̂ (BX)) C (BY )− 1

2
C (ω̂ (BY )) V (BX)

−1

2
V (ω̂ (BY )) C (BX) +

1

2
C (ĝ (BX,BY )) V P̂

+
1

2
V (ĝ (BX,BY )) C P̂

C∇
B̃ CX

B̃ CY = C∇̂
B̃ CX

B̃ CY − 1

2
C ω̂
(
B̃ CX

)(
B̃ V Y

)
−1

2
V ω̂
(
B̃ CX

)(
B̃ CY

)
− 1

2
C ω̂
(
B̃ CY

)(
B̃ VX

)
−1

2
V ω̂
(
B̃ CY

)(
B̃ CX

)
+

1

2
C ĝ

(
B̃ CX, B̃ CY

)
V P̂

+
1

2
C ĝ

(
B̃ VX, B̃ CY

)
C P̂

for arbitrary X, Y ∈ S. Hence, from equations (2.5) and (3.6) we obtain

C

(
B

(
◦
∇XY

)
+m (X,Y )N

)
= C (B (∇XY ) + h (X,Y )N)

−1

2
C (ω̂ (BX)BY )− 1

2
C (ω̂ (BY )BX)

+
1

2
C (ĝ (BX, BY ) (BP + ηN))

= C (B (∇XY ) + h (X,Y )N)− 1

2
C ω̂
(
B̃ CX

)
B̃ V Y

−1

2
V ω̂
(
B̃ CX

)
B̃ CY − 1

2
C ω̂
(
B̃ CY

)
B̃ VX

−1

2
V ω̂
(
B̃ CY

)
B̃ CX

+
1

2
C ĝ
(
B̃ CX, B̃ CY

)(
B̃ V P + V η VN

)
+

1

2
C ĝ
(
B̃ VX, B̃ CY

)(
B̃ CP + Cη VN + V η CN

)

B̃ C

(
◦
∇XY

)
+ Vm

(
CX, CY

)
CN + Cm

(
CX, CY

)
VN

= B̃ C (∇XY ) + V h
(

CX, CY
)

CN + Ch
(

CX, CY
)

VN

−1

2
C ω̂
(
B̃ CX

)
B̃ V Y − 1

2
V ω̂
(
B̃ CX

)
B̃ CY

−1

2
C ω̂
(
B̃ CY

)
B̃ VX − 1

2
V ω̂
(
B̃ CY

)(
B̃ CX

)
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+
1

2
C ĝ
(
B̃ CX, B̃ CY

)
B̃ V P +

1

2
V η C ĝ

(
B̃ CX, B̃ CY

)
VN

+
1

2
C ĝ
(
B̃ VX, B̃ CY

)
B̃ CP +

1

2
Cη C ĝ

(
B̃ VX, B̃ CY

)
VN

+
1

2
V η C ĝ

(
B̃ VX, B̃ CY

)
CN

Moreover we get

B̃ C

(
◦
∇XY

)
= B̃ C (∇XY )− 1

2
C ω̂
(
B̃ CX

)
B̃ V Y − 1

2
V ω̂
(
B̃ CX

)
B̃ CY

−1

2
C ω̂
(
B̃ CY

)
B̃ VX − 1

2
V ω̂
(
B̃ CY

)
B̃ CX

+
1

2
C ĝ
(
B̃ CX, B̃ CY

)
B̃ V P +

1

2
C ĝ
(
B̃ VX, B̃ CY

)
B̃ CP

and

Vm
(

CX, CY
)

CN + Cm
(

CX, CY
)

VN

=

(
V h
(

CX, CY
)

+
1

2
V η C ĝ

(
B̃ VX, B̃ CY

) )
CN

+

(
Ch
(

CX, CY
)

+
1

2
V η C ĝ

(
B̃ CX, B̃ CY

)
+

1

2
Cη C ĝ

(
B̃ VX, B̃ CY

))
VN.

From the equations (2.4), it follows that

C

(
◦
∇XY

)
= C (∇XY )− 1

2
Cω
(

CX
)

V Y − 1

2
V ω
(

CX
)

CY − 1

2
Cω
(

CY
)

VX

−1

2
V ω
(

CY
)

CX +
1

2
g̃
(

CX, CY
)

V P +
1

2
g̃
(

VX, CY
)

CP

and finally, we obtain

C
◦
∇CX

CY = C∇CX
CY − 1

2
Cω
(

CX
)

V Y − 1

2
V ω
(

CX
)

CY

−1

2
Cω
(

CY
)

VX − 1

2
V ω
(

CY
)

CX

+
1

2
g̃
(

CX, CY
)

V P +
1

2
g̃
(

VX, CY
)

CP,

C
◦
∇CY

CX = C∇CY
CX − 1

2
Cω
(

CY
)

VX − 1

2
V ω
(

CY
)

CX

−1

2
Cω
(

CX
)

V Y − 1

2
V ω
(

CX
)

CY

+
1

2
g̃
(

CY, CX
)

V P +
1

2
g̃
(

V Y, CX
)

CP.

Thus, we have

C
◦
T
(

CX, CY
)

= C
◦
∇CX

CY −C
◦
∇CY

CX −
[

CX, CY
]

= 0.
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Similarly

g̃

(
C

◦
∇ CX

CY, CZ

)
+ g̃

(
CY, C

◦
∇ CX

CZ

)

= g̃( C∇ CX
CY − 1

2
Cω
(

CX
)

V Y − 1

2
V ω
(

CX
)

CY

−1

2
Cω
(

CY
)

VX − 1

2
V ω
(

CY
)

CX

+
1

2
g̃
(

CX, CY
)

V P +
1

2
g̃
(

VX, CY
)

CP, CZ)

+ g̃( CY, C∇ CX
CZ − 1

2
Cω
(

CX
)

V Z − 1

2
V ω
(

CX
)

CZ

−1

2
Cω
(

CZ
)

VX − 1

2
V ω
(

CZ
)

CX

+
1

2
g̃
(

CX, CZ
)

V P +
1

2
g̃
(

VX, CZ
)

CP )

= g̃
(
C∇ CX

CY, CZ
)

+ g̃
(

CY, C∇ CX
CZ
)

−1

2
C (ω (X)) g̃

(
V Y, CZ

)
− 1

2
V (ω (X)) g̃

(
CY, CZ

)
−1

2
C (ω (Y )) g̃

(
VX, CZ

)
− 1

2
V (ω (Y )) g̃

(
CX, CZ

)
−1

2
C (ω (X)) g̃

(
CY, V Z

)
− 1

2
V (ω (X)) g̃

(
CY, CZ

)
−1

2
C (ω (Z)) g̃

(
CY, VX

)
− 1

2
V (ω (Z)) g̃

(
CY, CX

)
+

1

2
g̃
(

CX, CY
)
g̃
(

V P, CZ
)

+
1

2
g̃
(

VX, CY
)
g̃
(

CP, CZ
)

+
1

2
g̃
(

CX, CZ
)
g̃
(

CY, V P
)

+
1

2
g̃
(

VX, CZ
)
g̃
(

CY, CP
)

= g̃
(
C∇ CX

CY, CZ
)

+ g̃
(

CY, C∇ CX
CZ
)

− C (ω (X)) V (g (Y, Z))− V (ω (X)) C (g (Y, Z))

= g̃
(
C∇ CX

CY, CZ
)

+ g̃
(

CY, C∇ CX
CZ
)
− C (ω (X) g (Y, Z))

= CX g̃
(

CY, CZ
)
− C (ω (X) g (Y, Z)) .

And from following equation

CX g̃
(

CY, CZ
)

=

(
C

◦
∇ CX g̃

)(
CY, CZ

)
+ g̃

(
C

◦
∇ CX

CY, CZ

)
+ g̃

(
CY, C

◦
∇ CX

CZ

)
we get (

C
◦
∇ CX g̃

)(
CY, CZ

)
= C (ω (X) g (Y, Z)) .
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The Weyl connection C
◦
∇ on (TS, g̃) can be given by

C
◦
∇CX

CY = C∇CX
CY − 1

2
Cω
(

CX
)

V Y − 1

2
V ω
(

CX
)

CY − 1

2
Cω
(

CY
)

VX

−1

2
V ω
(

CY
)

CX +
1

2
g̃
(

CX, CY
)

V P +
1

2
g̃
(

VX, CY
)

CP

and taking the complete lift of both sides of the equations (3.6) we obtain

C∇
B̃ CX

B̃ CY = B̃

(
C

◦
∇CX

CY

)
+ Vm

(
CX, CY

)
CN + Cm

(
CX, CY

)
VN

From the equation (2.4), it follows that

Vm
(

CX, CY
)

= V h
(

CX, CY
)

+
1

2
V η C ĝ

(
B̃ VX, B̃ CY

)

Cm
(

CX, CY
)

= Ch
(

CX, CY
)

+
1

2
V η C ĝ

(
B̃ CX, B̃ CY

)
+

1

2
Cη C ĝ

(
B̃ VX, B̃ CY

)
.

According to [11], TS is totally umbilical if and only if there exist differentiable functions λ

and µ, such that

Vm
(
X̃, Ỹ

)
= λg̃

(
X̃, Ỹ

)
Cm

(
X̃, Ỹ

)
= µg̃

(
X̃, Ỹ

)
for arbitrary vector fields X̃, Ỹ ∈ =1

0 (TS). If both λ and µ vanish, then TS is totally

geodesic. It is travial to prove the following theorems by using the equations (2.4).

Theorem 3.5. TS is totally umbilical with respect to the Weyl connection C
◦
∇ if and only

if it is totally umbilical or totally geodesic with respect to the Riemannian connection C∇.

Theorem 3.6. TS is totally umbilical with respect to the Weyl connection C
◦
∇ if and only

if S is totally umbilical with respect to the Weyl connection
◦
∇.

Theorem 3.7. TS is totally geodesic with respect to the Weyl connection C
◦
∇ if and only if

it is totally geodesic with respect to the Riemannian connection C∇ and the vector field P̂

is tangent to S.

Theorem 3.8. TS is totally geodesic with respect to the Weyl connection C
◦
∇ if and only

if S is totally geodesic with respect to the Weyl connection
◦
∇.
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