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Abstract. In this study, it is made new generalizations by adding a security parameter “n”

to NTRU cryptosystem. These generalizations are analyzed in three categories. The first

category clarifies summative generalization, the second category explains a multiplicative

generalization and the latest category expresses a dimension generalization, and the system

is researched with greater sets and many choosings of parameters. As a result of all these

evidences, it is stated that these generalization outputs creates a new NTRUSIGN.
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1. Introduction

In 1996, NTRU was first introduced by J. Hoffstein, J. Pipher ve J. Silverman in Crypto’

96 [5]. Then NTRU’s developers contributed to NTRU which is denoted as a ring-based

and a public key encryption method by making parameter optimization [4]. In 2003, they

introduced NTRUSIGN [9], i. e., a digital signature version of NTRU. In the same year, they

with another team made a presentation which analyzed description errors of NTRU [21]. J.

H. Silverman published a technical report about invertible polynomials in a ring in 2003 [13].

In 2005, J. H. Silverman and W. Whyte published a technical report which analyzed error

probabilities in NTRU decryption [22]. Also, the founding team which published an article
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on effects increasing security level of parameter choosing [11] has published related reports

in the website www.ntru.com.

NTRU is quite resistant to quantum computers based attacks as well as its speed. The

basic reason of protecting this resistant bases on finding a lattice vector with the least length

and powerfulness of problems of finding a lattice point closest to private key into a high

dimensional lattice [20]. Unlike the other public key cryptosystems, the sheltering structure

of the NTRU cryptosystems against these quantum based attacks moves it more interesting

and developing position day by day.

Some examples of quitely full-scale non-destructive attacks to the NTRU cryptosystem

were originally made by Coppersmith et al. in 1997 [1]. Then new parameters which does

away with effects of this attack were presented by Hoffstein et al. in 2003 [8].

As an another example of attack [14], it has increased importance up till today by present-

ing to more powerful, current and new parameters and solutions to the NTRU cryptosystem

organized an attack of splitting the difference [15].

On behalf of detailed readings, it can be seen to [16, 17, 24] for different types of attacks

types, and on the contrary, it can be seen to [12, 19, 3] for proposed new parameters and

new system.

2. Motivation and Method

Hoffstein et al. introduced the first NTRU based digital signature in 2001 [18]. Then they

gave a verification method for the NTRU cryptosystem in the same year [6]. The basic aim

of these studies which present a digital signature and a verification method is to guarantee

which there is no leakage into the system.

Even decoding a cryptological message falls short to state that you are an approved user

of the system. Hence, solving a verification code or a reposted different text in the same way

can co-opt you. It is clear in this age which the development of mobile payment methods and

all business and government works are solved on the network that the discipline of digital

signature is open for improvement. In this sense, the basic motivation of this study studies

proposed in [7] and [23], and also the articles in [2, 25, 10] can be helpful on behalf of extra

readings.
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3. Aim and Scope

This study aims primarily to generalize the NTRU cryptosystem. This study which can

be summarize as sending the sum, product or enhancing dimension of composed encoded

texts by hiding a message with multi public keys and error polynomials purposes specially

to avoid an attack on the plain text. It is obtained that the message is divided into parts

with this method and also can be sent partially by showing that several two message can be

sent in the generalization of enhancing dimension simultaneously.

Besides, this article explains the conditions that all these generalization offers can be used

as a digital signature. If a new encoded text composed in the form of generalizations is sent

just after previously partial encoded texts, the recipient is interpreted as a correct system

user since s/he reads and obtains the message, and it can transform to a digital signature.

The most important output of this study is to enlarge still the NTRU cryptosystem against

the developing quantum computers attacks and render to sheltering case.

4. NTRU Parameters

These are parameters using in the encryption and decryption operations of NTRU and in

the key generation processes:

� N : it is determines a maximum degree of polynomials being used. N is chosen as a

prime so that the process is preserved against attacks, and it is chosen big enough so

that the process is preserved from lattice attacks.

� q : it is a large module and it is chosen as a positive integer. Its values differ relatedly

what we aim in the process.

� p : it is a small module and generally a positive integer. It is rarely chosen as a

polynomial with small coefficients.

The parameters N, q and p can be differently chosen according to the preferred security level.

The case (p, q) = 1 is always preserved so that the ideal (p, q) is equal to the whole ring.

� Lf , Lg : sets of private key, sets in which it is chosen polynomials to be kept confi-

dential chosen for encryption.

� Lm : it is a plain text set. it is stated a set of unencrypted and codable polynomials.

� Lr : it is a set of error polynomials. It is stated a set of arbitrarily chosen error

polynomials with small coefficients in the phase of encryption.
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� center : it is a centralization method. An algorithm guaranteeing which mod q

reductions works in perfect truth in the phase of decryption.

It can be seen [5] for a perscrutation of the NTRU parameter which is introduced above in

general for now and can be given its values in the next section.

5. Algebraic background of NTRU

5.1. Definitions and notation. The encryption operations of NTRU is performed in a

quotient ring R = Z[x]/(xN − 1). N is a positive integer and it is generally chosen as a

prime. If f(x) is a polynomial in R, then fk denotes a coefficient of xk for every k ∈ [0, N−1]

and f(x) denotes a value of f in x for x ∈ C. A convolution product h = f ? g is given by

hk =
∑

i+j≡k mod N fi · gi where f and g are two polynomials in R. When NTRU was first

introduced, it was chosen p and q as a power of 3 and 2, respectively. The subset Lm :

consisted of polynomials with the coefficients {−1, 0, 1} called ternary polynomials. The

private keys f ∈ Lf was usually chosen in the form 1 + p · F . The studies shows that it can

be chosen p as a polynomial and parameters can be varied.

5.2. Key generation.

1. f ∈ Lf and g ∈ Lg is arbitrarily chosen such that f is invertible in mod p and mod q.

2. Fq = f−1 mod q and Fp = f−1 mod p.

3. A private key is (p, Fp).

4. A public key is H = p · g ? Fq mod q.

It is noted that g cannot be used in the phase of decryption. Thus, it cannot be given as a

private key. Since H ? f = p · g mod q, H ? f = 0 mod p which cannot be used when mod p

is substituted.

5.3. Encryption. If the encryption is represented in an algorithmic language;

Input: a message m ∈ Lm and a public key H.

Output: a cipher message e ∈ Υ (m)

1. Chose r ∈ Lr arbitrarily.

2. Return e = r ? H +m mod q.

The set Υ (m) denotes plain texts m which can be encrypted.
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5.4. Decryption. If a phase of decryption is represented as algorithmic, an algorithm D

acts e as below:

Input: a cipher message e ∈ Υ (m) and a private key (p, Fp).

Output: a plain text D(e) = m ∈ Lm.

1. Calculate a mod q = e ? fmodq.

2. Have a polynomial amodq with integer coefficients from a = p · r ? g + f ? m ∈ R by

performing centralization operation.

3. m mod p = a ? Fp mod p.

4. a plain text m = Ψ mod p.

It is noted that Ψ is the mapping Ψ : m 7−→ m mod p. That is, it performs Ψ : Lm −→

Lm mod p. It is important choosing of a convenient parameter in order to work decryption

operation impeccably, i.e., D(e) = m.

6. Choosing Parameters of the New System

The proposed generalized system has used some parameters literally. That is, the choos-

ings of the prime number p and q, the number N , the polynomials f , g, r etc. is the same

as in the classical NTRU system. The only difference is that different polynomials f , g and

r can be chosen for different public keys generation.

7. Using Notations in the New System

The same representations can be used under the same conditions and the same choosings

by holding to all classical NTRU notations. It is only useful to introduce three notations

f∗(n), f
∗
(n,j) and f−1

(n). f
∗
(n) consists of a convolution product of n chosen all secret keys where

f∗(n) = f1 ? f2 ? ... ? fn. f∗(n,j) = f1 ? f2 ? ... ? fj−1 ? fj+1 ? ... ? fn consists of a convolution

product of all except the j. secret key. Let f−1
(n) denote an inverse of product of n unitary

secret keys f on mod p.

8. How does the summative generalization system work?

This generalized system pre-encrypts differently a message by choosing n different public

keys and n different error polynomials. The sum of these composed pre-encrypted texts is

sent as a recent encrypted message. The number n is relatively prime p and q, respectively.

However, there exist two different cases where the number n is greater and less than the
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numbers p and q being modules. Thus, it leads to add a new parameter in the old classical

system NTRU since it works as a security parameter of this system. Now, we show how the

system works in the case n < p, n < q and (n, p) = 1, (n, q) = 1. We consider initially

this system in the classical NTRU rings as Zp[x]/(xN − 1) and Zq[x]/(xN − 1). Then it is

reconsidered by taking a field instead of a ring.

Lemma 8.1. A message polynomial m is encrypted n times by choosings of a public key

hi = f−1
iq ? gi and an error polynomial ri, 1 ≤ i ≤ n according to the classical method of the

NTRU cryptosystem and then the plain text m can be achieved in the case which the sum of

composed encrypted texts ei 1 ≤ i ≤ n is sent.

Proof. Let the encrypted forms of messages m be written and summed obviously

and one under the other. We have

e1 = ph1 ? r1 +m (mod q)

e2 = ph2 ? r2 +m (mod q)

: :

+ en = phn ? rn +m (mod q)

e1 + e2 + ...+ en = p[(h1 ? r1) + (h2 ? r2) + ...+ (hn ? rn)] + nm (mod q).

(8.1)

Now, we obtain

f∗(n)(e1 + e2 + ...+ en) = p[(f∗(n,1) ? g1 ? r1) + (f∗(n,2) ? g2 ? r2) + ...

+(f∗(n,n) ? gn ? rn)] + f∗(n) ? nm (mod q)
(8.2)

by applying the product of each unitary polynomial fi, 1 ≤ i ≤ n to Equation (8.1). Since

f∗(n) consists of the product of the invertible secret keys f and this product is invertible in

the statement (8.2), both sides of the equation is multiplied by f−1
(n) and then the message nm

should not impressed by these values if we consider the equation in mod p instead of mod q.

So,

e1 + e2 + ...+ en = nm (mod p).

Since an user knows the security parameter n into the system, he knows that taken message

is m or the message nm being its n−fold by the notion in the form

e1 + e2 + ...+ en = m+m+ ...+m︸ ︷︷ ︸ (mod p).

n
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This case goes into the probabilistic cryptology. That is, it is based on the assumption that

an user of the system can exit the intricate situation. Now, let us give a certain decryption

method by means of fields.

Lemma 8.2. Let p and q be prime numbers, and let M and S be two N−order irreducible

polynomials in Fp[x] and Fq[x]. Then the system proposal given in Lemma 8.1 works in the

fields Fp[x]/(M) and Fq[x]/(S) non-probabilistically.

Proof. Let us remind that the polynomials f , g, r and m can be only chosen in

Fp[x]/(M) or Fq[x]/(S) such that all conditions in Lemma 8.1 remain the same. Similarly, let

the polynomial m be encrypted by n different public keys h and n different error polynomials

r, and whole encrypted text be divided by n and be sent. Let the statement (8.1) in Lemma

8.1 be divided by n, and let

a =
e1 + e2 + ...+ en

n

= p.
1

n
[(h1 ? r1) + (h2 ? r2) + ...+ (hn ? rn)] +m (mod q)

be sent as a encrypted text. If the polynomial a is first multiplied by f∗(n) and then f−1
(n), and

the current statement calculate in mod p, the system works non-probabilistically as

e1 + e2 + ...+ en
n

= m (mod p).

Now, we state how the system works in the case q > n > p and (p, n) = 1.

Lemma 8.3. All conditions in Lemma 8.1 remain the same, and the system works with

small probability part in the case q > n > p and (p, n) = 1.

Proof. To avoid writing repetition, we skip the steps of decryption in Lemma 8.1

and consider the last step as follows:

e1 + e2 + ...+ en = nm (mod p). (8.3)

When n < q, we reach to mod p without changing. But, there exist k, l ∈ Z such that

n = kp+ l when n > p. Then Equation (8.3) becomes

e1 + e2 + ...+ en = lm (mod p).

When l < n in the last situation, a probabilistic decryption should be done. That is, taken

message can be only m, lm or nm. Since the user of the system knows parameters n, p, q,

he chooses an appropriate text from the set {m, lm, nm}.
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Proposition 8.1. The system works with the probability 4 since there is a possibility of

multiplying by a as a result of b mod p from n = aq + b in addition to the operations in

Lemma 8.3 in the case n > q > p.

9. Multiplicative Generalization

We clarify a method that a message encrypts n times and then the product of recent

composed encrypted polynomials is sent as an encrypted text. The choosings and operations

of summative generalization told in the first chapter remain the same, and let’s encrypt a

message m in n different forms. Let all pre-encrypted texts m be written and multiplied one

under the other. We specify that it is helpful choosing the prime p large enough so that the

residue classes does not constitute a complex situation.

9.1. How does the system work?

e1 = ph1 ? r1 +m (mod q)

e2 = ph2 ? r2 +m (mod q)

: :

? en = phn ? rn +m (mod q)

e1 ? e2 ? ... ? en = pn(h1 ? h2 ? ... ? hn) ? (r1 ? r2 ? ... ? rn) ? p[H ? R] ? m

+mn (mod q)

(9.4)

where H?R is a short result of the convolution product of hi and ri. In the decryption phase,

a symbolic result is only written since its inverse need not to be calculated and is zeroized

in mod p. If Equation (9.4) is multiplied by f∗(n) and f−1
(n) as in Lemma 8.1, respectively, and

the result is calculated in mod p, then we have an equation

e1 ? e2 ? ... ? en = mn (mod p).

If mn (mod p) is chosen in the form that need not to be the reduction, then

e1 ? e2 ? ... ? en = mn (9.5)

is possible. Equation (9.5) reached in the latest phase proposes us a two probability decryp-

tion:

(1) The message is onlym. That is, m becomes known by means of the security parameter

n in a polynomial mn.

(2) Or the message is already mn.

Now, we give the nonprobability working situation of the system.
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Lemma 9.1. If all conditions and choosings are done as in the previous chapter, we consider

Equation (9.4). The system works non probabilistically in the case that [e1 ? e2 ? ... ? en]n

is sent as a encrypted text by exponentiating n−th power of the polynomial e1 ? e2 ? ... ? en

instead of e1 ? e2 ? ... ? en.

Proof. When the n−th power of the encrypted text is exponentiated in the statement

(9.4) and is sent in the form

[e1 ? e2 ? ... ? en]n,

if all decryption steps are done appropriately then an equation

(e1 ? e2 ? ... ? en)n = mn mod p

consists of instead of the statement (9.5) so that the message becomes directly known in the

form

e1 ? e2 ? ... ? en = m

when p is chosen as a sufficiently large parameter.

10. Coordinate Generalization and Enhancing dimension

When a NTRU cryptographic operation is made in a ring R = Z[x]/(xN − 1), a different

public key h2 can be generated by choosing an error polynomial r2 ∈ R from a generated

public key h1. The first cryptographic operation is made in the form which e1 = h1 ? r1 +

m (mod q) if h1 = pf−1
q ?g for f, g ∈ R. The same message (it can be different) can be hidden

in the form e2 = h2?r2+m by means of an another public key produced by h2 = h1?r1+r2 for

an arbitrarily chosen r2 ∈ R. In the latest case, (h1, h2) is a public key, (e1, e2) is a encrypted

text and (f, g) is a secret key where the choosings of f and g is as in the classical NTRU

operations. The message that wishes sent can be (m,m) or (m1,m2). It is worth noting

that all polynomials are the same degree. If they are not, an appropriate monomial with 0

coefficient must be added. To explain the algebraic structure on which this new proposed

system is constructed, it is clear that a mapping

θ : R = Z[x]/(xN − 1) −→ ZN

defined by

θ(a) = (a0, a1, ..., aN−1)
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is a homeomorphism for a(x) = a0 + a1x+ ...+ aN−1x
N−1 ∈ R. We define a mapping µ by

means of the mapping θ.

µ : R×R −→ ZN × ZN , µ((a, b)) = (θ(a), θ(b))

under the operations (a, b)⊕ (c, d) = (a+ c, b+ d), (a, b)� (c, d) = (a ? c, b ? d) for a, b, c and

d ∈ R, i.e., we define by

µ((a, b)) = ((a0, a1, ..., aN−1), (b0, b1, ..., bN−1)).

It can be seen easily that the operations ⊕ and � are well-defined. µ is a homeomorphism

since

µ((a, b)⊕ (c, d)) = µ((a+ c, b+ d))

= (θ(a+ c), θ(b+ d))

= (θ(a) + θ(c), θ(b) + θ(d))

= (θ(a), θ(b)) + (θ(c), θ(d))

= µ((a, b)) + µ((c, d))

and

µ((a, b)� (c, d)) = µ((a ? c, b ? d))

= (θ(a ? c), θ(b ? d))

= (θ(a) ? θ(c), θ(b) ? θ(d))

= (θ(a), θ(b)) ? (θ(c), θ(d))

= µ((a, b)) ? µ((c, d))

so that it is shown that µ is a homeomorphism. More clearly, it is written by the laws

(f, g)⊕ (f ′, g′) = (f + f ′, g + g′)

(f, g)� (f ′, g′) = (f ? f ′, g ? g′)

in R × R for the operations f, f ′, g, g′ ∈ R. Since the ring R can be embedding into R × R

by f 7→ (1, f), (1, f) ∈ R × R is used for all f ∈ R. Then it is possible that the element

(1, f) is invertible since f ∈ R is invertible. That is, if f ? f ′ ≡ 1 mod p for f ∈ R then

(1, f)� (1, f ′) = (1, 1) so that (1, 1) is a unit element of R×R.

After all these details and explanations, we present a NTRU on this structure. Let f, g, ri ∈

R be determined according to the classical NTRU methodology. Let a message (m1,m2) be

sent for the message polynomials m1,m2 ∈ R. A vector (e1, e2) ∈ R×R ∼= Z2N constituted

by the polynomials e1 and e2 which are determined by the pre-encryptions

e1 = pf−1
q ? g ? r1 +m1 (mod q)
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e2 = ph2 +m2 (mod q)

is sent where h1 = pf−1
q ? g and h2 = ph1 ? r1 + r2 (mod q) are two public keys. (f, f)

and (fp, fp) represent secret keys and (r1, r2) represents error vectors of the new proposed

system where (h1, h2) is a public key and fp is an inverse of f in mod p. Since the arbitrarily

choosings of g generate many secret keys, it is stated that the keys (f, f) and (fp, fp) is only

sufficient for the system.

10.1. How does the system work? The receiver opens the vector (e1, e2) by means of

secret keys (f, f) and (fp, fp) as follow.

(e1, e2)� (f, f) = (e1 ? f, e2 ? f) (mod q)

= (p ? g ? r1 + f ? m1, p
2 ? g ? r1 + pr2 ? f + f ? m2) (mod q)

= (f ? m1, f ? m2) (mod p).

(10.6)

If the statement (10.6) is multiplied by (fp, fp), then (fp, fp)�(e1, e2)�(f, f) = (m1,m2)mod p

and the decryption result becomes directly known the message.

10.2. Advantages of the system.

• The receiver uses two public keys such as h1 and h2. Hence, even if a key is obtained,

the other is not obtained easily.

• A larger message such as (m1,m2) is sent in a lump instead of a message m.

• On the constituted system is on Z2N ∼= ZN×ZN , NTRU is more sheltering according

to the ring ZN ∼= R = Z[x]/(xN − 1).

• If f ∈ R is a private key, then (f, f) ∈ R×R is a private key so that no extra search

operation and time are needed.

10.3. Disadvantage of the system. Although involving multiple operations and producing

multiple secret keys tighten the security, it leads to a regression in time and effort capacity.

11. NTRU Digital Signatures

It is understood that if the messages ei, 1 ≤ i ≤ n are sent to the receiver and are correctly

read by the receiver, then there is not infiltration into the system and this receiver is the

right person in summative generalization method given in the first chapter as follow:

If you decode the codes e1, e2, ..., en, you must also decode the code e1 + e2 + ... + en,

thus you prove that you are a confidential user! If the receiver also decodes this summative

code, then he digitally signs. Similarly, the multiplicative generalization method is also used
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as a digital signature and finally sending related codes (e1, e2) in an upper dimension, i.e.,

working in R×R instead of R can be used as a new digital signature method. e1 and e2 are

sent in this method and it is expected that the receiver decodes finally the text (e1, e2). Its

another decipherment acts as a digital signature. Enlarging dimension can remove to the set

RN = R×R× ...×R︸ ︷︷ ︸
N

easily. Thus, it is understood that the receiver is the right user when the code (e1, e2, ..., en)

is read.

It is shown that the conducted system generalizations can be worked as a digital signature

and a verification method. If a generalization parameter ”n” is chosen as n = p1q1 for

a multiplicative generalization, then the top step of the decryption phase of the system is

reduced to solve the RSA problem. It is shown how the proposed generalization systems are

based on a strong foundation. That is, the reached final phase is

e ≡ mp1q1 (mod q)

when NTRU decryption steps are applied properly.

A digital signature

Dn
NTRUSIGN : m 7−→ (m,

∑
ei), 1 ≤ i ≤ n

is defined by means of a mapping

Di
NTRUEncrypt : (m, ri, hi) 7−→ ei, 1 ≤ i ≤ n

where all of the parameters are chosen as introduced in the classical NTRU cryptosystem,

and a verification of this signature is defined by

Dverification :
∑

ei 7−→ (m,n, n mod q), 1 ≤ i ≤ n

and a new NTRU based digital signature is obtained.

12. Conclusion and Recommendations

The basic output of this study is to make a production of NTRU on more comprehensive

structure. In this sense, the obtained datas enlarged the system and proposed to constitute

the system on large sets for choosings of extra public keys, error polynomials. However,

this proposals supporting security, effectiveness and sheltering necessitate the devices which

contain a larger processor and more comprehensive memory as a result of many operations
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and choosings of key from a larger set. It is obvious that the speed is affected negatively but

effectiveness increases by enhancing an usage area and intended use effectiveness increase

under existing conditions. These proposals which can be used as a new digital signature

method can be affirmed practically. The Cryptoanalysis of a new NTRU generalized system

can be done by trying attacks and analyzing new lattice structures corresponding to all these

generalizations. Since the main sending message which is constituted in the form of a sum

or product of encrypted messages consisting of during the sending of the same message can

mean n messages, it can be developed as a probabilistically encryption method. In addition

to this, sending different messages in the same time according to this method means sending

a huge message in different parts by choosing a larger parameter p so that it is important to

preserve the plain text.
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