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TIMELIKE SYMMETRIES AND CAUSALITY IN LORENTZIAN

MANIFOLDS

C. ATINDOGBÉ∗ AND R. HOUNNONKPE

Abstract. Metric and curvature symmetries (Killing, homothetic, conformal, null con-

vergence conditions...) of Riemannian, semi-Riemannian, and lightlike manifolds play an

important role in theoretical physics, especially in general relativity. In the present paper,

we investigate and discuss the consequences that spacetimes admit such symmetries and

show that their existence places restrictions on both the null geometry of hypersurfaces and

the different hierarchies of spacetime causality.

1. Introduction

Metric symmetries and curvature conditions (such as null convergence conditions) of Rie-

mannian, semi-Riemannian, and lightlike manifolds play an important role in theoretical

physics, especially in general relativity ([9, 12, 18, 16, 19] and references therein). The

purpose of this paper is to focus on the consequences of the existence of some symmetries

(timelike conformal, homothetic, Killing, affine Killing, affine conformal Killing, projective

vector fields) on both the geometry of null hypersurfaces and causal hierarchy of spacetimes

(chronology, total imprisoning, stably causal, causaly continuous, strongly causal, totally

vicious, reflecting...).
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As we shall see, the existence of certain symmetries places important restrictions on the

properties of null hypersurfaces (See Theorem 3.1, Theorem 3.2, Theorem 3.3 in Section 3)

and the spacetime (for example Theorem 4.8 tells us among other that if a compact confor-

mally flat Lorentzian manifold of dimension 4 with nowhere vanishing scalar curvature obeys

the null convergence condition and supports a timelike affine conformal Killing vector field

then it is totally vicious ). The following organization is adopted for the paper. In Section 2

we summarize some elements of causality theory and the causal hierarchy of spacetimes and

provide typical ingredients of the geometry of null hypersurfaces and rigged Riemannian

structure. Most of these introductory materials are to be found in [20, 21, 22, 23, 8, 12]. In

Section 3, after some technical results on the function τ(ξ) which represents the obstruction

to the geodesibility of the rigged vector field, we prove a non-existence result of closed (in

the topological sense) embedded null hypersurface (Theorem 3.3) and geodesibility proper-

ties (Theorem 3.1 and Theorem 3.2) on orientable Lorentzian manifolds admitting timelike

affine conformal Killing vector field (resp. timelike projective vector field). In Section 4, we

discuss causality in conformally flat spacetimes. The main results of this section are restric-

tions placed on some levels of the causal ladder of spacetimes such as mentioned above and

located at Theorems 4.1, 4.2, 4.3, 4.4, 4.6, 4.7, 4.8 and Corollary 4.1. In Section 5, causality

conditions are also explored restricted to quasi-Einstein spacetimes with some applications

to perfect fluid spacetimes (Theorem 5.1,Theorem 5.2, Theorem 5.3,Theorem 5.5 and The-

orem 5.4). In Section 6, we extend to Hubble-isotropic spacetimes (Theorem 6.2), under a

non negative (resp. a non positive) assumption on the expansion, the following result [14]:

conformally stationary spacetime with a complete stationary vector field is reflecting. Sim-

ilar sufficient conditions based on the sign of the expansion are given in Theorem 6.4 and

Theorem 6.7 to ensure that Hubble-isotropic spacetimes are distinguishing or stably causal.

2. Preliminaries

2.1. Elements of Causality theory and the causal hierarchy.

2.1.1. Causality relations. The causality relations on M are defined as follows. If p, q ∈ M

, then p � q means there is a future-pointing timelike curve in M from P to q; p < q

means there is a future-pointing causal curve in M from p to q. Evidently p � q implies

p < q. As usual, p ≤ q means that either p < q or p = q. For a subset A of M , the subset

I+(A) = {q ∈ M : there is a p ∈ A with p� q} is called the chronological future of A, and

J+(A) = {q ∈ M : there is a p ∈ A with p ≤ q } is called the causal future of A. Thus
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A ∪ I+(A) ⊂ J+(A). For a single point, I+(p) = {q : p � q}; similarly for J+. Dual to the

preceding definitions are corresponding past versions. Thus I−(A) = {q ∈ M : there is a

p ∈ A with q � p } is the chronological past of A. In general, past definitions and proofs

follow from the future versions (and vice versa) merely by reversing time-orientation.

Definition 2.1. A point p ∈ M is a future endpoint of a future-directed causal curve γ :

I −→M if, for every neighborhood O of p, there exists a point t0 ∈ I such that γ(t) ∈ O for

all t > t0. A causal curve is future inextensible (respectively, past inextensible) if it has no

future (respectively, past) endpoint.

Definition 2.2. A future inextensible causal curve γ : I −→M , is totally future imprisoned

in the compact set C if there is t0 ∈ I, such that for every t > t0, t ∈ I, γ(t) ∈ C, i.e. if

it enters and remains in C. It is partially future imprisoned if for every t0 ∈ I, there is

t > t0, t ∈ I, such that γ(t) ∈ C, i.e. if it continually returns to it. The curve escapes to

infinity in the future if it is not partially future imprisoned in any compact set.

2.1.2. Causality conditions. If (M, g) contains no closed timelike curves, we say that the

chronology condition holds on (M, g). A spacetime (M, g) satisfies the causality condition

provided there are no closed causal curves in M . Obviously this implies the chronology

condition, but not conversely. The causality condition (and similarly for chronology) is said

to hold at a point p if there are no closed causal curves through p, and on a subset A if it

holds at each p ∈ A. A spacetime is non-total future imprisoning if no future inextensible

causal curve is totally future imprisoned in a compact set. A spacetime is non-partial future

imprisoning if no future inextensible causal curve is partially future imprisoned in a compact

set. Actually, Beem proved [5, Theorem 4] that a spacetime is non-total future imprisoning

if and only if it is non-total past imprisoning, thus in the non-total case one can simply speak

of the non-total imprisoning property (condition N, in Beem’s terminology [5]). The strong

causality condition holds at p ∈ M provided that given any neighborhood U of p there is

a neighborhood V ⊂ U of p such that every causal curve segment with endpoints in V lies

entirely in U . M is strongly causal if the strong causality condition holds at each p ∈ M .

The following new step on the causal ladder has also been established.

Definition 2.3. A spacetime (M, g) is called feebly distinguishing if (p, q) ∈ J+, p ∈ I+(q)

and q ∈ I−(p) implies p = q.
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A spacetime (M, g) is future-distinguishing at p ∈ M if and only if I+(p) 6= I+(q) for

each q ∈ M , with q 6= p. M is future-distinguishing if and only if it is future-distinguishing

at every point. This property of being future-distinguishing is called future-distinction. The

concept of past-distinction is defined similarly. A spacetime is stably causal if it cannot be

made to contain closed trips by arbitrarily small perturbations of the metric. The condition

of stable causality is equivalent to the existence of a global time function on (M, g), that is to

say, a function on M whose gradient is everywhere timelike and future-pointing. There is one

condition, related in some ways to the causality conditions below, which stands, nevertheless,

outside the causal ladder.

Definition 2.4. A spacetime (M, g) is called reflecting if I+(q) ⊂ I+(p) ⇔ I−(p) ⊂ I−(q)

for all p, q ∈M .

A spacetime (M, g) is called causally continuous if it is reflecting and feebly distinguishing.

Usually (see [20]), causal continuity was defined as a spacetime being reflecting and distin-

guishing. In ([21]), it is proved that the assumption can be relaxed to feeble distinction.

Causal continuity is stronger than stable causality. A spacetime (M, g) is called causally

simple if it is causal and J+(p), J−(p) are closed sets for all p ∈M . Finally, (M, g) is called

globally hyperbolic if it is causal and J+(p) ∩ J−(p) are compact sets for all p, q ∈M .

2.2. Geometry of null hypersurfaces and rigged Riemannian structure. In this sec-

tion, we review some facts about null hypersurfaces, see [8] for more details. Let (M, g)

be a (n + 2)-dimensional Lorentzian manifold and M a null hypersurface in M . A screen

distribution on Mn+1, is a complementary bundle of TM⊥ in TM . It is then a rank n

non-degenerate distribution over M . In fact, there are infinitely many possibilities of choices

for such a distribution. Each of them is canonically isomorphic to the factor vector bundle

TM/TM⊥. From [8], it is known that for a null hypersurface equipped with a screen distri-

bution, there exists a unique rank 1 vector subbundle tr(TM) of TM over M , such that for

any non-zero section ξ of TM⊥ on a coordinate neighborhood U ⊂M , there exists a unique

section N of tr(TM) on U satisfying

g(N, ξ) = 1, g(N,N) = g(N,W ) = 0 (2.1)

∀W ∈ S (N)|U .Then TM admits the splitting:

TM |M = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕S (N). (2.2)
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We call tr(TM) a (null) transverse vector bundle along M . Now, we need to use the (general)

concept of rigging for null hypersurfaces, see [12] for details.

Definition 2.5. Let M be a null hypersurface in a Lorentzian manifold. A rigging for M is

a vector field ζ defined on some open set containing M such that ζp /∈ TpM for each p ∈M .

Given a rigging ζ in a neighborhood of M in (M, g) let α denote the 1-form g-metrically

equivalent to ζ, i.e α = g(ζ, .). Take ω = i?α, being i : M ↪→ M the canonical inclusion.

Next, consider the tensors

^
g = g + α⊗ α and g̃ = i?

^
g . (2.3)

It is easy to show that g̃ defines a Riemannian metric on the (whole) hypersurface M .

The rigged vector field of ζ is the g̃-metrically equivalent vector field to the 1-form ω and

it is denoted by ξ. In fact the rigged vector field ξ is the unique lightlike vector field in

M such that g(ζ, ξ) = 1. Moreover, ξ is g̃-unitary. A screen distribution on M is given by

S (ζ) = TM ∩ ζ⊥. It is the g̃-orthogonal subspace to ξ and the corresponding null transverse

vector field to S (ζ) is

N = ζ − 1

2
g(ζ, ζ)ξ. (2.4)

A null hypersurface M equipped with a rigging ζ is said to be normalized and is denoted

(M, ζ) (the latter is called a normalization of the null hypersurface). A normalization (M, ζ)

is said to be closed (resp. conformal) if the rigging ζ is closed i.e the 1-form α is closed (resp.

ζ is a conformal vector field, i.e there exists a function ρ on M such that Lζg = 2ρg ). We

say that ζ is a null rigging for M if the restriction of ζ to the null hypersurface M is a null

vector field.

Let ζ be a rigging for a null hypersurface in a Lorentzian manifold (M, g). The screen

distribution S (ζ) = kerω is integrable whenever ω is closed, in particular if the rigging is

closed. On a normalized null hypersurface (M, ζ), the Gauss and Weingarten formulas are

given by

∇XY = ∇XY +B(X,Y )N, (2.5)

∇XN = −ANX + τ(X)N, (2.6)

∇XPY =
?
∇XPY + C(X,PY )ξ, (2.7)

∇Xξ = −
?
AξX − τ(X)ξ, (2.8)



TIMELIKE SYMMETRIES AND CAUSALITY IN LORENTZIAN MANIFOLDS 193

for any X,Y ∈ Γ(TM), where ∇ denotes the Levi-Civita connection on (M, g), ∇ denotes the

connection on M induced from ∇ through the projection along the null transverse vector field

N and
?
∇ denotes the connection on the screen distribution S (ζ) induced from ∇ through

the projection morphism P of Γ(TM) onto Γ
(
S (ζ)

)
with respect to the decomposition

(2.7). Now the (0, 2) tensors B and C are the second fundamental forms on TM and S (ζ)

respectively, AN and
?
Aξ are the shape operators on TM with respect to the rigging ζ and

the rigged vector field ξ respectively and τ a 1-form on TM defined by

τ(X) = g(∇XN, ξ).

For the second fundamental forms B and C the following holds

B(X,Y ) = g(
?
AξX,Y ), C(X,PY ) = g(ANX,Y ) ∀X,Y ∈ Γ(TM), (2.9)

and

B(X, ξ) = 0,
?
Aξξ = 0. (2.10)

A null hypersurface M is said to be totally umbilic (resp. totally geodesic) if there exists

a smooth function ρ on M such that at each p ∈ M and for all u, v ∈ TpM , B(p)(u, v) =

ρ(p)g(u, v) (resp. B vanishes identically on M). These are intrinsic notions on any null

hypersurface in the sense that they are independent of the normalization. Remark that M

is totally umbilic (resp. totally geodesic) if and only if
?
Aξ = ρP (resp.

?
Aξ = 0). The trace of

?
Aξ is the lightlike (non normalized) mean curvature of M , explicitly given by

Hp =

n+1∑
i=2

g(
?
Aξ(ei), ei) =

n+1∑
i=2

B(ei, ei),

being (e2, . . . , en+1) an orthonormal basis of S (N) at p .

3. Timelike symmetries and rigging

3.1. Timelike projective and affine conformal Killing vectors field. In [12], several

results using energy conditions and timelike conformal vector field have been proved. We

extend this results to timelike affine conformal Killing vector field and timelike projective

vector field.

Definition 3.1. 1. A vector field ζ is called affine conformal Killing if Lζg = ρg + K

where K is a second order covariant constant (∇K = 0) symmetric tensor field.
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2. ζ is a projective vector field if

(Lζ∇)(X,Y ) = µ(X)Y + µ(Y )X,∀X,Y ∈ TM

where µ is a 1− forme defined on M .

We prove the following.

Lemma 3.1. Let (M, g) be a Lorentzian manifold and ζ a timelike affine conformal Killing

vector field (resp. a timelike projective vector field). For any null hypersurface M in M , the

normalized null hypersurface (M, ζ) satisfies

ξ(τ(ξ)) + 2(τ(ξ))2 = 0. (3.11)

Proof. We consider first the case ζ is a timelike affine conformal Killing vector

field. By definition, Lζg = ρg +K where K is a second order covariant constant (∇K = 0)

symmetric tensor field. From [12, Corollary 3.6], we have

τ(ξ) = g(∇ξζ, ξ) =
1

2
(Lζg)(ξ, ξ).

It follows that τ(ξ) = 1
2K(ξ, ξ). Now as ∇K = 0, we have (∇ξK)(ξ, ξ) = 0 which leads

to ξ(K(ξ, ξ) − 2K(ξ,∇ξξ) = 0 and then ξ(K(ξ, ξ) + 2τ(ξ)K(ξ, ξ) = 0. Finally since τ(ξ) =

1
2K(ξ, ξ), we get ξ(τ(ξ)) + 2(τ(ξ))2 = 0. Now, suppose ζ is a timelike projective vector field.

By definition,

(Lζ∇)(X,Y ) = µ(X)Y + µ(Y )X,∀X,Y ∈ TM

where µ is a 1− forme defined on M . It follows that (Lζ∇)(ξ, ξ) = 2µ(ξ)ξ that is

[ζ,∇ξξ]−∇[ζ,ξ]ξ −∇ξ[ζ, ξ] = 2µ(ξ)ξ.

Since ξ is lightlike and ∇ξξ = −τ(ξ) we get

−τ(ξ)g([ζ, ξ], ξ)− g(∇ξ[ζ, ξ], ξ) = 0

and

−τ(ξ)g([ζ, ξ], ξ)− (ξ(g([ζ, ξ], ξ)) + τ(ξ)g([ζ, ξ], ξ)) = 0.

Taking into account that g([ζ, ξ], ξ) = −τ(ξ). We obtain

ξ(τ(ξ)) + 2(τ(ξ))2 = 0.
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From equation(3.11), it follows that the function τ(ξ) vanishes identically on M if the

rigged vector field ξ is complete. This is the case when M is a compact null hypersurface.

Hence we get the following corollary.

Corollary 3.1. Let (M, g) be a Lorentzian manifold and ζ a timelike affine conformal Killing

vector field (resp. a timelike projective vector field). Let (M, ζ) be a normalized compact null

hypersurface, then the rigged vector field ξ is g−geodesic that is τ(ξ) = 0.

In [12] it is shown that if the reverse null convergence condition (that is Ric(U) ≤ 0 for all

lightlike vector field U) holds on a Lorentzian manifold admitting a timelike conformal vector

field then any compact totally umbilic null hypersurface is totally geodesic. Replacing the

existence of a timelike conformal vector field by the existence of a timelike affine conformal

Killing vector field (resp. a timelike projective vector field), we get the same result as stated

in the following.

Theorem 3.1. Let (M
n+2

, g), with n ≥ 1 be an orientable Lorentzian manifold such that

Ric(U) ≤ 0 for all lightlike vector field U . Suppose (M, g) admits a timelike affine conformal

Killing vector field (resp. a timelike projective vector field) ζ. Then any compact totally

umbilic null hypersurface is totally geodesic.

Proof. Let M be a compact totally umbilic null hypersurface with umbilicity factor

ρ. Recall that

Ric(ξ) = ξ(H) + τ(ξ)H − |
∗
Aξ|2,

[3, Remark 3.] and H = −d̃iv(ξ). From Corollary 3.1, τ(ξ) = 0. hence

Ric(ξ) = ξ(H)− |
∗
Aξ|2. (3.12)

It follows by integrating (3.12) that∫
M
Ric(ξ)dg̃ =

∫
M

(ξ(H)− |
∗
Aξ|2)dg̃.

By the divergence theorem,∫
M

(ξ(H)dg̃ = −
∫
M
Hd̃iv(ξ)dg̃ =

∫
M
H2dg̃.

Hence ∫
M
Ric(ξ)dg̃ =

∫
M

(H2 − |
∗
Aξ|2)dg̃ =

∫
M
n(n− 1)ρ2dg̃ ≥ 0.



196 C. ATINDOGBÉ∗ AND R. HOUNNONKPE

Using Ric(ξ) ≤ 0, we get that n(n − 1)ρ2 vanishes identically. If n ≥ 2 then ρ2 vanishes

identically and M is totally geodesic. If n = 1 then∫
M
Ric(ξ)dg̃ = 0

and since Ric(ξ) has sign, Ric(ξ) = 0. In this case (3.12) becomes

ξ(ρ)− ρ2 = 0.

As ξ is complete (being M compact), ρ = 0 and the conclusion holds.

In case the null convergence condition holds we get the following.

Theorem 3.2. Let (M
n+2

, g), with n ≥ 1 be a Lorentzian manifold satisfying the null

convergence condition. Suppose (M, g) admits a timelike affine conformal Killing vector field

(resp. a timelike projective vector field) ζ . Then any compact null hypersurface in M is

totally geodesic.

Proof. Let M be a compact null hypersurface in M . It holds

Ric(ξ) = ξ(H) + τ(ξ)H − |
∗
Aξ|2.

From Corollary 3.1, τ(ξ) = 0, hence

Ric(ξ) = ξ(H)− |
∗
Aξ|2.

The null convergence condition and the inequality |
∗
Aξ|2≥ 1

nH
2 lead to ξ(H)− 1

nH
2 ≥ 0, and

since ξ is complete (M is compact) we get that H = 0. From the relation ξ(H)− |
∗
Aξ|2≥ 0,

it follows that |
∗
Aξ|2= 0 which leads to

∗
Aξ = 0. We conclude that M is totally geodesic.

More generally, we prove the following.

Theorem 3.3. Let (M
n+2

, g), with n ≥ 1 be a null complete Lorentzian manifold such that

Ric(U) > 0 for all null vector U ∈ TM . Suppose (M, g) admits a timelike affine conformal

Killing vector field (resp. a timelike projective vector field) ζ. Then it can not exist any

closed (in the topological sense) embedded null hypersurface.

Proof. Suppose that M is a closed embedded null hypersurface in (M, g) and consider

ζ as a rigging for M . From Lemma 3.1

ξ(τ(ξ)) + 2(τ(ξ))2 = 0. (3.13)
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If τ(ξ) never vanishes on M then setting ξ̃ = exp( 1√
|τ(ξ)|

)ξ, it follows that ξ̃ is a geodesic

null vector field tangent to M which is complete since M is null complete and M is closed

embedded. To simplify notation, we still call ξ̃ by ξ. Then as ξ is geodesic, τ(ξ) = 0 and

Ric(ξ) = ξ(H)− |
∗
Aξ|2.

Since Ric(ξ) > 0, the inequality |
∗
Aξ|2≥ 1

nH
2 lead to ξ(H) − 1

nH
2 > 0, and since ξ is

complete it follows that H = 0 which is a contradiction. Now, suppose τ(ξ) vanishes at

some p ∈ M . Let γp be the integrale curve of ξ through p. γp is a complete geodesic

curve and (τ(ξ) ◦ γ)′ + 2(τ(ξ) ◦ γ)2 = 0. As the unique solution of the differential equation

y′+ 2y2 = 0 which can vanish is the trivial solution, we get τ(ξ) ◦ γ = 0. As above this leads

to (H ◦ γ)′ − 1
n(H ◦ γ)2 > 0, and since γ is complete it follows that H ◦ γ = 0 which is a

contradiction.

Before proving the next proposition, we need the following lemma.

Lemma 3.2. Let (M, ζ) be a normalized null hypersurface in a Lorentzian manifold (M, g)

such that ζ is affine conformal Killing. Then τ(X) = C(ξ,X) + K(ξ,X) ∀X ∈ S (ζ). In

particular if ζ is conformal then τ(X) = C(ξ,X), ∀X ∈ S (ζ).

Proof. Since ζ is affine conformal Killing there exists a function ρ on M such that

Lζg = ρg + K. It follows that (Lζg)(ξ,X) = K(ξ,X) ∀X ∈ S (ζ). Then (Lζg)(ξ,X) =

g(∇ξζ,X) + g(∇Xζ, ξ) = K(ξ,X). Since g(ζ,X) = 0, g(∇ξζ,X) = −g(∇ξX, ζ). Using the

fact that

∇ξX = ∇ξX =
?
∇ξ X + C(ξ,X)ξ,

we get g(∇ξX, ζ) = C(ξ,X). Moreover, g(∇Xζ, ξ) = τ(X). It follows that −C(ξ,X)ξ +

τ(X) = K(ξ,X) and then τ(X) = C(ξ,X) +K(ξ,X).

Proposition 3.1. Let (M, g) be a Lorentzian manifold and (M, ζ) a normalized compact

null hypersurface such that ζ is an affine conformal Killing vector field satisfying ∇X(dα) =

0, ∀X ∈ ζ⊥ where α = g(ζ, .). If M is totally geodesic then it holds:

ξ(−ρ
2

)g(X,X) = g(R(ξ,X)X,N) ∀X ∈ S (ζ). (3.14)

Proof. From the Gauss-Codazzi equations, see [8, Page 95, Eq. (3.11)],

g(R(X,Y )PZ,N) = (∇XC)(Y, PZ)− (∇Y C)(X,PZ)

+C(X,PZ)τ(Y )− C(Y, PZ)τ(X)
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∀X,Y, Z ∈ TM where

(∇XC)(Y, PZ) = X(C(Y, PZ)− C(∇XY )− C(Y,
?
∇XPZ).

So, we have

g(R(ξ,X)X,N) = (∇ξC)(X,X)− (∇XC)(ξ,X) + C(ξ,X)τ(X)− C(X,X)τ(ξ) (3.15)

∀X ∈ S (ζ). From [12, Corollary 3.6 (4)] it holds

−2C(U,X) = dα(U,X) + (Lζg)(U,X) + g(ζ, ζ)B(U,X)

∀U ∈ TM and ∀X ∈ S (ζ). As M is totally geodesic,

−2C(U,X) = dα(U,X) + (Lζg)(U,X)

that is

C(U,X) = −1

2
dα(U,X)− 1

2
ρg(U,X)− 1

2
K(U,X). (3.16)

Being M compact and ζ affine conformal Killing, from Corollary 3.1, K(ξ, ξ) = τ(ξ) = 0.

Equation (3.15) can be written as

g(R(ξ,X)X,N) = ξ(C(X,X))− C(∇ξX,X)− C(X,
?
∇ξX)

−(X(C(ξ,X))− C(∇Xξ,X)− C(ξ,
?
∇XX)) + C(ξ,X)τ(X)

∀X ∈ S (ζ). Using (3.16), ∇K = 0 and ∇X(dα) = 0, we get

g(R(ξ,X)X,N) = (ξ(−ρ
2

)g)(X,X)− 1

2
C(ξ,X)K(ξ,X) +

1

2
C(ξ,X)dα(ξ,X) +C(ξ,X)τ(X).

From (3.16) C(ξ,X) = −1
2dα(ξ,X) − 1

2K(U,X) and from Lemma 3.2 τ(X) = C(ξ,X) +

K(ξ,X). Using both relations we obtain

ξ(−ρ
2

)g(X,X) = g(R(ξ,X)X,N) ∀X ∈ S (ζ). (3.17)

Remark 3.1. As we can see in the above proof, the compactness of the null hypersurface is

only used to get τ(ξ) = 0. So Proposition 3.1 remains true if the compactness assumption is

dropped and τ(ξ) = 0. Recall also that without compactness hypothesis if ζ is conformal then

τ(ξ) = 0 (see [12]). As a consequence, we get the following.

Proposition 3.2. Let (M, g) be a Lorentzian manifold and (M, ζ) a normalized null hy-

persurface such that ζ is a conformal vector field satisfying ∇X(dα) = 0, ∀X ∈ ζ⊥ where

α = g(ζ, .). If M is totally geodesic then it holds:

ξ(−ρ
2

)g(X,X) = g(R(ξ, Y )PZ,N) ∀X ∈ S (ζ). (3.18)
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3.2. Spatially conformally stationary symmetries and riggings. In this section, we

prove some results very usefuls for the next section. First we recall the following lemmas.

Lemma 3.3. ([1]) Let (M, g) be a Lorentzian manifold and (M, ζ) a normalized null hy-

persurface M such that ζ is a geodesic spatially conformal stationary reference frame. Then

τ(ξ) = ρ
2 .

Lemma 3.4. ([1]) Let (M, g) be a Lorentzian manifold and (M, ζ) a normalized null hyper-

surface such that ζ is a closed, spatially conformal stationary reference frame.Then τ(X) =

0 ∀X ∈ S (ζ).

A normalized null hypersurface (M, ζ) is screen umbilic if the tensor C satisfies for all

u, v ∈ TpM , C(p)(u, v) = φ(p)g(u, v) for some smooth function φ on M . We prove the

following.

Proposition 3.3. Let (M, g) be a Lorentzian manifold and (M, ζ) a normalized null hy-

persurface such that ζ is a closed and spatially conformal stationary reference frame. If M

is totally umbilic with umbilic factor φ then (M, ζ) is screen umbilic. Moreover it holds

C = (−ρ
2 + φ)g. In particular, if M is totally geodesic then C = −ρ

2g.

Proof. From Lemma 3.4, we have τ(X) = 0 ∀X ∈ S (ζ). Recall that for a closed

rigging we have τ(X) = −C(ξ,X) ([12]), so that

C(ξ,X) = 0, ∀X ∈ S (ζ). (3.19)

From [12, Corollary 3.6 (4)] it holds

−2C(U,X) = dα(U,X) + (Lζg)(U,X) + g(ζ, ζ)B(U,X)

∀U ∈ TM and ∀X ∈ S (ζ) . Since M is totally totally umbilic with umbilic factor φ and ζ

is closed spatially conformally stationary, we get

C(X,Y ) = (−ρ
2

+ φ)g ∀X,Y ∈ S (ζ). (3.20)

Since g(ξ,X) = 0, from equation 3.19 and equation 3.20 it follows that C = (−ρ
2 + φ)g.

In case M is totally geodesic, we prove the following.

Proposition 3.4. Let (M, g) be a Lorentzian manifold and (M, ζ) a normalized null hyper-

surface such that ζ is a closed and spatially conformal stationary reference frame. If M is
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totally geodesic then it holds:

(ξ(−ρ
2

) +
ρ2

4
)g(Y, PZ) = g(R(ξ, Y )PZ,N) ∀Y,Z ∈ TM. (3.21)

Proof. From Proposition 3.3, C = −ρ
2g = λg where we have set λ = −ρ

2 Now recall

the following equation:

g(R(X,Y )PZ,N) = (∇XC)(Y, PZ)− (∇Y C)(X,PZ) + C(X,PZ)τ(Y )− C(Y, PZ)τ(X)

(3.22)

∀X,Y, Z ∈ TM. Taking X = ξ and using C(ξ, PZ) = 0 (equation 3.19) and C = λg we get

g(R(ξ, Y )PZ,N) = (∇ξλg)(Y, PZ)− (∇Y λg)(ξ, PZ)− (Y, PZ)λg(Y, PZ)τ(ξ). (3.23)

The connection ∇ is not a metric connection but satisfies.

(∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y ). (3.24)

As M is totally geodesic, we get ∇Xg = 0, ∀X ∈ TM. Hence (3.23) becomes

g(R(ξ, Y )PZ,N) = (ξ(λ)− λτ(ξ))g(Y, PZ). (3.25)

Since τ(ξ) = ρ
2 (Lemma 3.3) and λ = −ρ

2 it follows that:

(ξ(−ρ
2

) +
ρ2

4
)g(Y, PZ) = g(R(ξ, Y )PZ,N) ∀Y,Z ∈ TM.

Proposition 3.5. Let (M
n+2

, g) be a conformally flat Lorentzian manifold and (M, ζ) a nor-

malized null hypersurface such that ζ is a closed and spatially conformal stationary reference

frame. If M is totally geodesic then it holds:

n(ξ(−ρ
2

) +
ρ2

4
) = (

1

n
− 1

2
)

n∑
i=1

Ric(ei, ei) + (
1

2
− 1

n+ 1
)S (3.26)

being (e1, . . . , en) an orthonormal basis of S (ζ) and S the scalar curvature of (M, g).

Proof. Since (M, g) is conformally flat, the Weyl tensor vanishes. So we have:

R(X,Y )Z = − 1

n
(Ric(X,Z)Y −Ric(Y,Z)X + g(X,Z)QY − g(Y,Z)QX)

+
S

n(n+ 1)
(g(X,Z)Y − g(Y,Z)X).

Take p ∈M and (e1, . . . , en) an orthonormal basis of S (ζ) at p then we get

R(ξ, ei)ei = − 1

n
(Ric(ξ, ei)ei −Ric(ei, ei)ξ −Qξ)−

S

n(n+ 1)
ξ



TIMELIKE SYMMETRIES AND CAUSALITY IN LORENTZIAN MANIFOLDS 201

and

g(R(ξ, ei)ei, N) = − 1

n
(−Ric(ei, ei)−Ric(ξ,N))− S

n(n+ 1)
.

From (3.14) it follows that:

ξ(−ρ
2

) +
ρ2

4
=

1

n
(Ric(ei, ei) +Ric(ξ,N))− S

n(n+ 1)

and consequentely

n(ξ(−ρ
2

) +
ρ2

4
) =

1

n

n∑
i=1

Ric(ei, ei) +Ric(ξ,N)− S

n+ 1
(3.27)

Finally, note that S =
∑n

i=1Ric(ei, ei) + 2Ric(ξ,N) that is

Ric(ξ,N) = −1

2

n∑
i=1

Ric(ei, ei) +
S

2
. (3.28)

Replacing (3.28) in (3.27) gives

n(ξ(−ρ
2

) +
ρ2

4
) = (

1

n
− 1

2
)

n∑
i=1

Ric(ei, ei) + (
1

2
− 1

n+ 1
)S.

4. Causality in conformally flat spacetimes

A pseudo-Riemannian manifold (M
n+2

, g) is said to be (locally) conformally flat if for

each point p ∈M , there exists an open neighborhood U and a positive function ef : U −→ R

such that g = efg0 , where (En+2, g0) is the pseudo-Euclidean space. In all the paper,

by conformally flat, we will always mean locally conformally flat. A necessary condition for

(M
n+2

, g) to be conformally flat is that the Weyl tensor vanish. In dimension greater or equal

to 4 , this condition is sufficient as well. Many authors have investigated about conformally

flat pseudo-Riemannian manifolds. In the following, we will restrict ourself on conformally

flat Lorentzian manifolds which include Robertson-Walker spacetime. We put a particular

attention to the causal structure of such spacetimes. We start with the following.

Theorem 4.1. Let (M
n+2

, g) be a conformally flat Lorentzian manifold of dimension n

satisfying the null convergence condition. Suppose (M, g) is chronological, null complete and

admits a closed spatially conformally stationary reference frame ζ. Then the following holds:

1. if n = 1 and Ric(X,X) < 0 ∀X ∈ ζ⊥ then (M, g)is non total imprisoning.

2. if n = 2 and (M, g) has negative scalar curvature then (M, g) is non total imprisoning.

3. if n ≥ 3 and Ric(X,X) > n−1
(n+1)(n−2)S ∀X ∈ ζ⊥ then (M, g) is non total imprison-

ing.
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Proof. Suppose (M, g) is totally imprisoning. Since (M, g) is chronological, from

[19, Theorem 3.9.], it contains a null line η contained in a compact minimal invariant set

Ω (in the sense of [19, Definition 3.6.]) such that γ̄ = Ω. Using the null completeness and

the null convergence condition η is contained in a smooth (topologically) closed (embedded)

achronal totally geodesic null hypersurface M [10, Theorem IV.1.]. Consider the normalized

null hypersurface (M, ζ). From Proposition 3.5, it holds:

n(ξ(−ρ
2

) +
ρ2

4
) = (

1

n
− 1

2
)

n∑
i=1

Ric(ei, ei) + (
1

2
− 1

n+ 1
)S.

Now we discuss the different cases.

1. if n+ 2 = 3 then we have

ξ(−ρ
2

) +
ρ2

4
=

1

2
Ric(e1, e1)

and by hypothesis ξ(−ρ
2) + ρ2

4 < 0. Note that γ can be considered as an integral

curve of ξ and since it is imprisonned in a compact set, it is defined on R. So along

γ we have

(ρ ◦ γ)′

2
− (ρ ◦ γ)2

4
> 0.

This yields a contradiction from the fact that γ is complete but the last differential

inequality can not hold for all time (see also [12, Proof of Proposition 3.11]). Hence

we conclude that (M, g) is non total imprisoning.

2. If n+ 2 = 4 then we have

2(ξ(−ρ
2

) +
ρ2

4
) =

1

6
S

and since the scalar curvature S is negative, we get the contradiction follows as in

the previous case.

3. If n ≥ 3, the hypothesis Ric(X,X) > n−1
(n+1)(n−2)S lead to

(
1

n
− 1

2
)

n∑
i=1

Ric(ei, ei) + (
1

2
− 1

n+ 1
)S < 0

and the contradiction follows as above.

The following lemma is needed in the proof of the next theorem.

Lemma 4.1. Consider the differential equation

y′(t)− y2(t) = h(t) (4.29)
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where h is a function which is bounded below by a positive constante k. Let ]a, b[ be the

maximal interval of any solution of (4.29), then a and b are finite.

Proof. Let y be a solution of (4.29) defined on a maximal interval ]a, b[. Suppose

b = ∞. From (4.29), we have y′

y2+k
≥ 1. Take t0 ∈]a, b[, then by integrating between t0 and

t, it follows that

1√
k
Arctan(

y(t)√
k

)− 1√
k
Arctan(

y(t0)√
k

) ≥ t− t0,∀ t ≥ t0.

This means that Arctan(y(t)√
k

) goes to ∞ as t goes to ∞, which is a contradiction. Now,

suppose a = −∞. Then we obtain

1√
k
Arctan(

y(t0)√
k

)− 1√
k
Arctan(

y(t)√
k

) ≥ t0 − t,∀ t ≤ t0.

This means that Arctan(y(t)√
k

) goes to −∞ as t goes to −∞, which is a contradiction.

Theorem 4.2. Let (M
n+2

, g) be a conformally flat Lorentzian manifold of dimension n

satisfying the null convergence condition. Suppose (M, g) is chronological, null complete and

admits a closed spatially conformally stationary reference frame ζ such that div(ζ) is bounded

above or below. Then the following holds:

1. if n = 1 and Ric(X,X) ≤ −k ∀X ∈ ζ⊥, with k a positive constante then (M, g) is

stably causal..

2. if n = 2 and the scalar curvature satisfies S ≤ −k with k a positive constante then

(M, g) is stably causal.

3. if n ≥ 3, suppose Ric(X,X) ≥ n−1
(n+1)(n−2)S+k ∀X ∈ ζ⊥ with k a positive constante

then (M, g) is stably causal.

Proof. Suppose (M, g) is not stably causal. Since it is chronological then it contains

a null line ([22]). As above this null line is contained in a totally geodesic null hypersurface M

and considering the normalized null hypersurface (M, ζ), (3.26) holds. Let γ be an integral

curve of ξ. Then ρ ◦ γ satisfies the differential equation

n(
y′

2
)− n(

y2

4
) = h(t) (4.30)

where

h(t) = (
1

2
− 1

n
)

n∑
i=1

Ric(ei, ei) + (
1

n+ 1
− 1

2
)S.

By hypothesis, there exists a positive constante k such that h ≥ k. Let I =]a, b[ be the

maximal interval of the solution ρ ◦ γ. From Lemma 4.1, a and b are finite. From (4.30) and
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h ≥ k with k > 0 , ρ ◦ γ is increasing. First, suppose div(ζ) is bounded above. As ρ ◦ γ is

increasing, its limit at b is either infinity or some real c. But only the latter can occurs as ρ

is bounded above. However, in this case the solution ρ ◦ γ is bounded near b contradicting

the ”theorem des bouts”. We conclude that (M, g) is stably causal.

Now suppose suppose div(ζ) is bounded below. Then the limit at a of ρ ◦ γ must be finite

and the contradiction follows as above.

From Theorem 4.1 and Theorem 4.2, the following holds.

Corollary 4.1. Let (M, g) be a conformally flat Lorentzian manifold of dimension 4 sat-

isfying the null convergence condition. Suppose (M, g) is chronological, null complete and

admits a closed spatially conformally stationary reference frame ζ. If (M, g) has negative

constante scalar curvature then it is non total imprisoning. Moreover if div(ζ) is bounded

above or below then it is stably causal.

For conformally stationary spacetime, we prove the following.

Theorem 4.3. Let (Mn+2, g) be a conformally flat Lorentzian manifold of dimension n

satisfying the null convergence condition. Suppose (M, g) is chronological, null complete and

admits a timelike conformal vector field ζ such that ∇X(dα) = 0, ∀X ∈ ζ⊥ where α = g(ζ, .).

Then the following holds:

1. if n = 1 and there exists a non negative constante k such that Ric(X,X) < −k (resp.

Ric(X,X) > k) ∀X ∈ ζ⊥, then (M, g) is non total imprisoning.

2. if n = 2 and (M, g) and there exists a non negative constante k such that the scalar

curvature satisfies S < −k (resp. S > k) then (M, g) is non total imprisoning.

3. if n ≥ 3, suppose there exists a non negative constante k such that Ric(X,X) >

n−1
(n+1)(n−2)S + k ∀X ∈ ζ (resp. Ric(X,X) < n−1

(n+1)(n−2)S − k ∀X ∈ ζ⊥) then

(M, g) is non total imprisoning.

Moreover if div(ζ) is bounded above or below and k is positive then (M, g) is stably causal.

Proof. Suppose (M, g) is totally imprisoning. Then there exists a null line η contained

in a smooth (topologically) closed embedded achronal totally geodesic null hypersurface M .

Consider the normalized null hypersurface (M, ζ). From Proposition 3.2, it holds

ξ(−ρ
2

)g(X,X) = g(R(ξ, Y )PZ,N), ∀X ∈ S (ζ).
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Following the proof of Proposition 3.5, we get

n(ξ(−ρ
2

)) = (
1

n
− 1

2
)

n∑
i=1

Ric(ei, ei) + (
1

2
− 1

n+ 1
)S.

The hypothesis in each of the three case lead to ξ(−ρ
2) < 0 or ξ(−ρ

2) > 0; that is ρ is a

Lyaponov function of the flow of ξ. Now consider the flow of ξ on M . Take a point p ∈ η and

let γp be the integral curve of ξ such that γp(0) = p. Then from [19, Theorem 3.9.] γ̄p = ω(γp)

and it follows that p is a positively recurrent point, that is, there exists tn → ∞ such that

γp(tn)→ p. The contradiction follows from the fact that ρ◦γp is strictly increasing. So (M, g)

is non total imprisoning. For the last part, suppose again by contradiction that (M, g) is

not stably causal. Then there exists a null line η contained in a smooth (topologically)

closed embedded achronal totally geodesic null hypersurface M . Consider the normalized

null hypersurface (M, ζ). As above we either ξ(−ρ
2) < −k or ξ(−ρ

2) > k with k a positive

constante. Recall that ξ is a g-geodesic vector field and since M is (topologically) closed

embedded and M null complete, then ξ is complete. Take any integral curve γ of ξ, then

there exist a positive constant k such that ρ ◦ γ < −k (resp. ρ ◦ γ > −k). It follows that

ρ ◦ γ is onto since ρ ◦ γ is defined on whole R, which gives the contradiction as ρ is bounded

above or below.

For spacetime admitting timelike homothetic (eventually Killing) vector field, we get.

Theorem 4.4. Let (M
n+2

, g) be a conformally flat Lorentzian manifold of dimension n

satisfying the null convergence condition. Suppose (M, g) is chronological, null complete and

admits a timelike homothetic (eventually Killing) vector field ζ such that ∇X(dα) = 0,∀X ∈

ζ⊥ where α = g(ζ, .). Then the following holds:

1. if n = 1 and Ric(X,X) < 0 (resp. Ric(X,X) > 0) ∀X ∈ ζ⊥ then (M, g) is stably

causal.

2. if n = 2 and (M, g) has nowhere vanishing scalar curvature then (M, g) is stably

causal.

3. if n ≥ 3 and Ric(X,X) > n−1
(n+1)(n−2)S ∀X ∈ ζ⊥

(resp. Ric(X,X) < n−1
(n+1)(n−2)S ∀X ∈ ζ⊥) then (M, g) is stably causal.

Moreover, in each case if additionally, ζ is complete then (M, g) is causally continuous.

Proof. Suppose by contradiction that (M, g) is not stably causal. Then there exists

a null line η contained in a smooth (topologically) closed embedded achronal totally geodesic
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null hypersurface M . Consider the normalized null hypersurface (M, ζ) then

n(ξ(−ρ
2

)) = (
1

n
− 1

2
)

n∑
i=1

Ric(ei, ei) + (
1

2
− 1

n+ 1
)S.

Since ζ is homothetic, the left hand side is zero whereas the right hand side is either positive

or negative; which gives the contradiction. Hence (M, g) is stably causal. Moreover is ζ is

complete then (M, g) is reflecting (see [14]) and then causally continuous.

Now, we consider the case when the spacetime is non chronological. In this case, the

chronology violating set is C = {x : x � x}, and is made by all the events through which

there passes a closed timelike curve. The spacetime violates chronology if C 6= ∅ that is if

there is a closed timelike curve and it is totally vicious if C = M . Suppose C 6= ∅, then C

can split into equivalence classes according to Carter’s equivalence relation x ∼ y ⇔ x � y

and y � x. Two points belong to the same class if there is a closed timelike curve passing

through them. The class of x ∈ C is denoted [x]. Note that [x] = I+(x) ∩ I−(x), thus [x]

is open. So the chronological violating set can be written C =
⋃
α Cα, with Cα its (open)

connected components. The boundary of the component Cα can be written ∂Cα =
⋃
k Bαk,

with Bαk its (closed) connected components. Some authors has studied the compactness

of the components of the chronological violating set’s boundary in link with some energy

condition ([15]) or absence of null line ([22]). More precisely, we have the following Kriele’s

theorem.

Theorem 4.5. Suppose that (M, g) satisfies the null energy condition and the null genericity

condition. If a connected component of the boundary of the chronology violating set C is

compact, then (M, g) is null geodesically incomplete.

We prove the following.

Theorem 4.6. Let (M
n+2

, g) be a non chronological non totally vicious conformally flat

Lorentzian manifold of dimension n satisfying the null convergence condition. Suppose (M, g)

is null complete and admits a closed spatially conformally stationary reference frame ζ. Then

the connected components of the boundary of the chronological violating set are all non com-

pact in each of the following case:

1. if n = 1 and Ric(X,X) < 0 ∀X ∈ ζ⊥.

2. if n = 2 and (M, g) has negative scalar curvature.

3. if n ≥ 3 and Ric(X,X) > n−1
(n+1)(n−2)S ∀X ∈ ζ⊥ .
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Proof. Suppose the boundary of the chronological violating set has a compact

connected component (say B) then there exists a null line η contained in B. Using the null

completeness and the null convergence condition η is contained in a smooth (topologically)

closed achronal totally geodesic null hypersurface M [10, Theorem IV.1.]. Consider the

normalized null hypersurface (M, ζ). From Proposition 3.5, it holds:

n(ξ(−ρ
2

) +
ρ2

4
) = (

1

n
− 1

2
)

n∑
i=1

Ric(ei, ei) + (
1

2
− 1

n+ 1
)S.

Then, we discuss the different cases as in the proof of Theorem 4.1 and get the contradiction.

Totally vicious spacetimes has been of interest of research. They include Godel spacetime

which is a solution of Einstein equation. It has been proved that a compact spacetime which

admits a timelike conformal vector field is totally vicious. In the following, we prove that if

the spacetime admits a closed spatially conformally stationary reference frame then under

some curvature and completeness hypothesis it is totally vicious. More precisely, we have:

Theorem 4.7. Let (M
n+2

, g) be a compact conformally flat Lorentzian manifold of dimen-

sion n satisfying the null convergence condition. Suppose (M, g) is null complete and admits

a closed spatially conformally stationary reference frame ζ. Then the following holds:

1. if n = 1 and Ric(X,X) < 0 ∀X ∈ ζ⊥ then (M, g) is totally vicious.

2. if n = 2 and (M, g) has negative scalar curvature then (M, g) is totally vicious.

3. if n ≥ 3 and Ric(X,X) > n−1
(n+1)(n−2)S ∀X ∈ ζ⊥ then (M, g) is totally vicious.

Proof. It is well known that a compact spacetime is non chronological. Suppose

(M, g) is non totally vicious, then from Theorem 4.1 the connected components of the

boundary of the chronological violating set are all non compact. But, being M compact,

the connected components of the boundary of the chronological violating set may be all

compact, which gives the contradiction.

In case the spacetime admits an timelike affine conformal Killing vector field, we can prove

the following.

Theorem 4.8. Let (M
n+2

, g) be a compact conformally flat Lorentzian manifold of dimen-

sion n satisfying the null convergence condition. Suppose (M, g) admits a timelike affine

conformal Killing vector field ζ such that ∇X(dα) = 0, ∀X ∈ ζ⊥ where α = g(ζ, .). Then

the following holds:

1. if n = 1 and Ric(X,X) < 0 (resp. Ric(X,X) > 0) ∀X ∈ ζ⊥ then (M, g) is totally

vicious.
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2. if n = 2 and (M, g) has nowhere vanishing scalar curvature then (M, g) is totally

vicious.

3. if n ≥ 3 and Ric(X,X) > n−1
(n+1)(n−2)S (resp. Ric(X,X) < n−1

(n+1)(n−2)S) ∀X ∈ ζ⊥

then (M, g) is totally vicious.

Proof. Note that (M, g) is complete as ζ is timelike affine conformal Killing. Sup-

pose (M, g) is not totally vicious then as M is compact it contained a null line η (see [22],

Theorem 12). Using the null completeness and the null convergence condition η is contained

in a smooth (topologically) closed achronal totally geodesic null hypersurface M . Consider

the normalized null hypersurface (M, ζ). From Proposition 3.1 and following the proof of

Proposition 3.5, we get

n(ξ(−ρ
2

)) = (
1

n
− 1

2
)

n∑
i=1

Ric(ei, ei) + (
1

2
− 1

n+ 1
)S.

Then, we discuss the different cases as in the proof of Theorem 4.1 and get the contradiction.

5. Quasi-Einstein spacetimes

A Lorentzian manifold is said to be quasi-Einstein ([26]) if there exists two smooth func-

tions µ and β and a timelike unit vector field U such that its Ricci tensor satisfies:

Ric = µg + βg(U, .)g(U, .). (5.31)

The notion of quasi-Einstein manifolds arose during the study of exact solutions of the

Einstein field equations as well as during considerations of quasi-umbilical hypersurfaces. For

instance, the Robertson- Walker spacetimes are quasi-Einstein manifolds. Also quasi-Einstein

manifold can be taken as model of the perfect fluid spacetime in general relativity. In this

section we explore causality conditions in such spacetime and finish with some applications

to perfect fluide spacetime ([26]).

5.1. Causality in quasi-Einstein spacetimes. Let start with the following.

Lemma 5.1. Let (M, g) be a Lorentzian manifold and (M, ζ) a normalized null hypersurface

such that ζ is a closed and spatially conformal stationary reference frame. If M is totally

geodesic then it holds:

n(ξ(−ρ
2

) +
ρ2

4
) = Ric(ξ,N)−K(ξ,N).
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Proof. From Proposition 3.4, it holds

(ξ(−ρ
2

) +
ρ2

4
)g(Y, PZ) = g(R(ξ, Y )PZ,N)

∀Y,Z ∈ TM . Take p ∈M and (e1, . . . , en) an orthonormal basis of S (ζ) at p then we get

n(ξ(−ρ
2

) +
ρ2

4
) =

n∑
i=1

g(R(ξ, ei)ei, N).

But

Ric(ξ,N) =
n∑
i=1

g(R(ξ, ei)ei, N) +K(ξ,N)

and hence

n(ξ(−ρ
2

) +
ρ2

4
) = Ric(ξ,N)−K(ξ,N).

Theorem 5.1. Let (M
n+2

, g) be a quasi-Einstein Lorentzian manifold of dimension n sat-

isfying the null convergence condition. Suppose (M, g) is chronological, null complete and

admits a closed spatially conformally stationary reference frame ζ. If the sectional curvature

satisfies K > µ for all non degenerate plane containing ζ then (M, g) is non total imprison-

ing.

Proof. Suppose (M, g) is totally imprisoning. Since (M, g) is chronological, from

[19, Theorem 3.9.], it contains a null line η contained in a compact minimal invariant set Ω

(in the sense of [19, Definition 3.6.]) such that γ̄ = Ω. Using the null completeness and the

null convergence condition η is contained in a smooth (topologically) closed achronal totally

geodesic null hypersurface M [10, Theorem IV.1.]. Consider the normalized null hypersurface

(M, ζ). From Lemma 5.1, we have

n(ξ(−ρ
2

) +
ρ2

4
) = Ric(ξ,N)−K(ξ,N).

From (5.31), Ric(ξ, ξ) = β(g(U, ξ))2. As M is totally geodesic, Ric(ξ, ξ) = β(g(U, ξ))2 = 0.

This follows from Ric(ξ) = ξ(H) + τ(ξ)H − |
∗
Aξ|2. Since g(U, ξ) never vanishes, β vanishes

on M . As g(ξ,N) = 1, we find that Ric(ξ,N) = µ and then

n(ξ(−ρ
2

) +
ρ2

4
) = µ−K(ξ,N). (5.32)

Using the hypothesis on the sectional curvature, we get

n(ξ(−ρ
2

) +
ρ2

4
) < 0.

The contradiction follows as in the proof of Theorem 4.1.
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Theorem 5.2. Let (M
n+2

, g) be a quasi-Einstein Lorentzian manifold of dimension n satisfy-

ing the null convergence condition. Suppose (M, g)is chronological, null complete and admits

a closed spatially conformally stationary reference frame ζ such that div(ζ) is bounded above

or below. If there exists a positive constante k such that K ≥ µ + k for all non degenerate

plane containing ζ then (M, g) is stably causal.

Proof. Suppose (M, g) is not stably causal. Then it contains a null line. As above

this null line is contained in a totally geodesic null hypersurface M and considering the

normalized null hypersurface (M, ζ), it holds

n(ξ(−ρ
2

) +
ρ2

4
) = µ−K(ξ,N).

Let γ be an integral curve of ξ. Then ρ ◦ γ satisfies the differential equation

n(
y′

2
)− ny

2

4
) = h(t) (5.33)

where

h(t) = µ−K(ξ,N).

By hypothesis, h ≥ k > 0 and following the proof of Theorem 4.2 we get the contradiction.

As in the conformally flat case, we prove the following.

Theorem 5.3. Let (M
n+2

, g)be a quasi-Einstein Lorentzian manifold of dimension n sat-

isfying the null convergence condition. Suppose (M, g) is chronological, null complete and

admits a timelike conformal vector field ζ such that ∇X(dα) = 0, ∀X ∈ ζ⊥ where α = g(ζ, .).

If K > µ (resp. K < µ) for all non degenerate plane containing ζ then (M, g) is non total

imprisoning. Moreover if div(ζ) is bounded above or below and there exists a positive con-

stante k such that K ≥ µ + k (resp. K ≤ µ − k) for all non degenerate plane containing ζ

then (M, g) is stably causal and (M, g) is causally continuous if ζ is complete.

Proof. Suppose (M, g) is totally imprisoning. We know that there exists a null line η

contained in a smooth (topologically) closed achronal totally geodesic null hypersurface M .

Consider the normalized null hypersurface (M, ζ). From Proposition 3.1, it holds

ξ(−ρ
2

)g(X,X) = g(R(ξ, Y )PZ,N)

∀X ∈ S (ζ). Take p ∈M and (e1, . . . , en) an orthonormal basis of S (ζ) at p then we get

n(ξ(−ρ
2

)) =

n∑
i=1

g(R(ξ, ei)ei, N).
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But

Ric(ξ,N) =
n∑
i=1

g(R(ξ, ei)ei, N) +K(ξ,N)

and hence

n(ξ(−ρ
2

)) = Ric(ξ,N)−K(ξ,N).

As g(ξ,N) = 1, we find that Ric(ξ,N) = µ and then

n(ξ(−ρ
2

)) = µ−K(ξ,N).

The hypothesis on the sectional curvature lead to ξ(−ρ
2) < 0 or ξ(−ρ

2) > 0 that is ρ is

a Lyaponov function of the flow of ξ. The contradiction follows from the existence of a

recurrent point (see proof of Theorem 4.3). So (M, g) is non total imprisoning. If div(ζ) is

bounded above or below and there exists a positive constante k such that K ≥ µ+ k (resp.

K ≤ µ − k) for all non degenerate plane containing ζ, then ξ(−ρ
2) < −k (resp. ξ(−ρ

2) > k)

and the contradiction follows as in the proof of Theorem 4.3. Hence (M, g) is stably causal.

If additionally ζ is complete then (M, g) is reflecting ([14]) and then causally continuous.

5.2. Physical model: perfect fluid spacetimes.

Definition 5.1. ([24]) A perfect fluid on a spacetime (M
4
, g) is a triple (U, ρ, p) where :

1. U is a timelike future-pointing unit vector field on M called the flow vector field.

2. ρ is the energy density function; p is the pressure function.

3. The stress-energy tensor is T = (ρ + p)U∗ ⊗ U∗ + pg, where U∗ is the one-form

metrically equivalent to U .

Let (M, g) be a perfect fluid spacetime satisfying the Einstein equation (with cosmological

constant Λ). Then it holds:

Ric+ (Λ− 1

2
S)g = (ρ+ p)U∗ ⊗ U∗ + pg,

where S is the scalar curvature. It follows that

Ric = (
1

2
S − Λ + p)g + (ρ+ p)U∗ ⊗ U∗.

Hence (M, g) is quasi-Einstein. Note that (M, g) satisfies the null energy condition if and

only if ρ+ p ≥ 0. From Theorem 5.1 and Theorem 5.2, we can state.
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Theorem 5.4. Let (M
4
, g) be a perfect fluid spacetime satisfying the Einstein equation (with

cosmological constant Λ). Suppose (M, g) is chronological, null complete and admits a closed

spatially conformally stationary reference frame ζ. If ρ + p ≥ 0 and the sectional curvature

satisfies K > 1
2S − Λ + p for all non degenerate plane containing ζ then (M, g) is non

total imprisoning. Moreover if div(ζ) is bounded above or below and there exists a positive

constante k such that K ≥ 1
2S − Λ + p + k for all non degenerate plane containing ζ then

(M, g) is stably causal.

From Theorem 5.3, we have also the following.

Theorem 5.5. Let (M
4
, g) be a perfect fluid spacetime satisfying the Einstein equation (with

cosmological constant Λ). Suppose (M, g) is chronological, null complete and admits a time-

like conformal vector field ζ such that ∇X(dα) = 0, ∀X ∈ ζ⊥ where α = g(ζ, .). If ρ+ p ≥ 0

and the sectional curvature satisfies K > 1
2S − Λ + p (resp. K < 1

2S − Λ + p) for all non

degenerate plane containing ζ then (M, g) is non total imprisoning. Moreover if div(ζ) is

bounded above or below and there exists a positive constante k such that K ≥ 1
2S−Λ + p + k

(resp.K ≤ 1
2S − Λ + p − k) for all non degenerate plane containing ζ then (M, g) is stably

causal and (M, g) is causally continuous if ζ is complete.

6. Causality in Hubble isotropic spacetimes

Following ([16]) we state:

Definition 6.1. An ordered triple (M, g, ζ) is called Hubble-isotropic spacetime if (M, g) is a

spacetime together with a future-directed reference frame ζ, and the shear and the acceleration

of ζ vanish, i.e ζ is a geodesic spatially conformal stationary reference frame.

Obviously, the notion of Hubble-isotropic spacetimes do naturally include conformally

stationary and stationary ones with vanishing acceleration. The following theorem due to A.

Dirmeier [7] gives the form of the Lorentzian metric in Hubble-isotropic spacetime of splitting

type.

Theorem 6.1. Let (M = R × Fn+1, g, ζ) be a Hubble-isotropic spacetime of splitting type.

Then there are two positive functions A, s on M and a Riemannian metric h on F , such

that ζ = 1
A∂t and the metric is given by

g(t, x) = −A2(t, x)dt2 + 2pr∗2(b(t, x)) ∨ dt+ s2(t, x)pr∗2(hx)

−pr
∗
2(b(t, x))⊗ pr∗2(b(t, x))

A2(t, x)
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with x ∈ F, t = pr1 : R× F → R, pr2 : R× F → F and (bt)t ∈ R a family of one-forms on F

obeying

b(t,x) = A(t, x)(βx +

∫ t

t0

H(dA)(t′,x)dt
′)

for some t0 ∈ R and a one-form β on F and H(dA) satisfies

dA = (∂tA)dt+H(dA).

The expansion Θ of ζ is given by Θ = div(ζ) = (n+1)(∂ts)(t,x)
A(t,x)s(t,x) .

These spacetimes are of particular interest in physics, especially in cosmology and are spe-

cial cases of shear-free cosmological models ([13]). Nevertheless, their global properties have

scarcely been analyzed up to now. The standard references for Hubble-isotropic spacetimes

are ([16]) and ([17]). We explore some causality aspects of such spacetimes and prove the

following.

Lemma 6.1. Let (M, g, ζ) be a Hubble-isotropic spacetime (with ζ complete) and (φt) be the

flow of ζ.

1. If the expansion Θ is non negative and γ is a causal curve (resp. a timelike curve)

then ∀ s ≤ 0, φs ◦ γ is also a causal curve (resp. a timelike curve).

2. If Θ is non positive and γ is a causal curve (resp. a timelike curve) then ∀ s ≥ 0, φs◦γ

is also a causal curve (resp. a timelike curve).

Proof. Recall that for a timelike reference ζ we have

(Lζg) = 2σ − 2u ∨ u̇+
2

n
Θh,

where u = g(ζ, .), u̇ = g(∇ζζ, .), σ is the shear tensor and h = g + u ⊗ u. As the shear and

the acceleration vanish, we get Lζg = 2
nΘh. We know also that Lζg = limt→0(1

t [φ
∗
t g − g]).

Let (φt) be a flow of ζ. Let v be a tangent vector at a point p, and set w = dφs(v) for all s.

Hence

lim
t→0

1

t
[g(dφt(w), dφt(w))− g(w,w)] =

2

n
Θ(g(w,w) + g2(ζ, w)).

Since φs ◦ φt = φs+t, it holds

lim
t→0

1

t
[g(dφs+t(v), dφs+t(v))− g(dφs(v), dφs(v))] =

2

n
Θ(g(dφs(v), dφs(v))

+g2(ζ, dφs(v))). (6.34)

Note that g(dφs(v), dφs(v)) + g2(ζ, dφs(v)) ≥ 0. In fact this holds trivially if dφs(v) is

spacelike or null and by the reverse Cauchy-Schwartz inequality, it holds also if dφs(v) is
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timelike. Hence if φ is non negative (resp. non positive) then (6.34) means that the real-

valued function s 7−→ g(dφs(v), dφs(v)) has non negative (resp. non positive) derivative. So

if Θ is non negative (resp. non positive ) then ∀ s ≤ 0, g(dφs(v), dφs(v)) ≤ g(v, v) (resp.

∀ s ≥ 0, g(dφs(v), dφs(v)) ≤ g(v, v)). In particular if Θ is non negative and γ is a causal

curve (resp. a timelike curve) then ∀ s ≤ 0, φs ◦ γ is also a causal curve (resp. a timelike

curve). In the same way, if Θ is non positive and γ is a causal curve (resp. a timelike curve)

then ∀ s ≥ 0, φs ◦ γ is also a causal curve (resp. a timelike curve).

In ([14]) it is proved that a conformally stationary spacetime with a complete stationary

vector field is reflecting. We prove similar result for Hubble-isotropic spacetime with non

positive (resp. non negative) expansion.

Theorem 6.2. Let (M, g, ζ) be a Hubble-isotropic spacetime with non negative (resp. non

positive) expansion. If ζ is complete then (M, g) is past reflecting (resp. future reflecting).

Proof. We suppose that the expansion is non negative and show past reflectivity

that is I+(p) ⊇ I+(q) =⇒ I−(p) ⊆ I−(q) (the non positive case is similar). Take any p 6= q

in M and let φt : M −→M be the flow of ζ at the stage t ∈ R. Assuming the first inclusion,

it is enough to prove p−ε := φ−ε(p) ∈ I−(q), for all ε > 0 (notice that the relation � is open

and then r � p will lie also in I−(p−ε) for small ε). As qε := φε(q) ∈ I+(p), there exists a

future directed timelike curve γ joining p and qε. From Lemma 6.1, φ−ε ◦ γ is also a timelike

curve and this curve connects p−ε and q as required.

Definition 6.2. Let (M, g) be a Lorentzian manifold.

1. A function f : M −→ R is a generalized time function if ∀ p, q ∈M,p < q ⇒ f(p) <

f(q).

2. A function f is a semi-time function if f is continuous and strictly increasing on

future directed timelike curve.

Remark 6.1. It is known that past reflectivity (resp. future reflectivity) is equivalent to

the continuity of the volume function t− (resp. t+) ( [4, Proposition 3.21]). Moreover t−

(resp. t+) is strictly increasing on any future-directed timelike curve if and only if (M, g) is

chronological ([20]).

As a consequence we have.
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Corollary 6.1. Let (M, g, ζ) be a chronological Hubble-isotropic spacetime with non negative

(resp. non positive) expansion. If ζ is complete then the volume functions t− and t+ of (M, g)

are semi-time functions.

In ([23]) the author gave the following characterization of distinguishing and strongly

causal spacetimes.

Theorem 6.3. 1. The spacetime (M, g) is future (resp. past) distinguishing if and only

if for every x, z ∈ M, (x, z) ∈ J+ and x ∈ J+(z) imply x = z (resp. (x, z) ∈ J+ and

z ∈ J−(x) imply x = z).

2. The spacetime (M, g) is strongly causal if and only if for every x, z ∈M, (x, z) ∈ J+

and (z, x) ∈ J+ imply x = z

We prove the following.

Theorem 6.4. Let (M, g, ζ) be a Hubble-isotropic spacetime with non positive (resp. non

negative) expansion. If (M, g) admits a generalized time function and ζ is complete then

(M, g) is stably causal.

Proof. We consider the case the expansion is non negative (the non positive case is

analogous). Suppose (M, g) is not distinguishing. Then from Theorem 6.3, there exists two

distinct points x, z ∈ M such that (x, z) ∈ J+ and x ∈ J+(z). Since x and z are distinct

and (x, z) ∈ J+ we have f(x) < f(z). Also, since x ∈ J+(z), there exists a sequence (xn)n

converging to x such that ∀n, xn ∈ J+(z). Let φt denote the flow of ζ at the stage t and γx

the integral curve of ζ such that γx(0) = x. As f is a generalized time function,

f ◦ γx : R −→ R

is strictly increasing and so continuous outside a countable set. Let t0 ∈ R, t0 < 0 such

that f ◦ γx is continuous at t0. From ([25], Proposition A.1) f is continuous at γx(t0) =

φt0(x). As φt0 maps a causal curve to a causal curve (Lemma 6.1) and (x, z) ∈ J+, we have

(φt0(x), φt0(z)) ∈ J+ so that f(φt0(x)) < f(φt0(z)). Moreover as ∀n, xn ∈ J+(z), it holds

∀n, φt0(z) ∈ J+(φt0(xn)) and then f(φt0(z)) < f(φt0(xn)). Since f is continuous at φt0(x)

this lead to f(φt0(z)) ≤ f(φt0(x)); which gives the contradiction. We conclude that (M, g) is

future distinguishing. We show similarly that (M, g) is past distinguishing. Hence (M, g) is

distinguishing. So the volume time function t+ and t− are generalized time function (see [20]).

Since ζ is complete then past reflectivity or future reflectivity hold on (M, g) (Theorem 6.2).
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From Remark 6.1, t− or t+ is continuous and then t+ or t− is a time function, that is (M, g)

is stably causal.

Now we put attention to conformally stationnary spacetime. Locally, such a spacetime

with a timelike conformally Killing vector field K can be written as a standard conformally

stationary spacetime with respect to K, i.e., a product manifold M = R× S and the metric

can be written as

g(t, x) = Ω(t, x)(−β(x)dt2 + 2ωxdt+ hx), (6.35)

being Ω a positive function on M , and h, β, ω, respectively a Riemannian metric, a positive

function and a 1-form, all on S. The case Ω1, or independent of t, corresponds to a standard

stationary spacetime. Then, a natural question is to wonder when a spacetime admitting a

(necessarily complete) conformally stationary timelike vector field K can be written globally

as above. A positive answer is given in [14]. Precisely the authors prove the following.

Theorem 6.5. Let (M, g) be a spacetime which admits a complete conformally stationary

vector field K. Then, it admits a standard splitting (6.35) if and only if (M, g) is distinguish-

ing. Moreover, in this case, (M, g) is causally continuous.

In the following, we prove that the standard splitting holds if the distinction property is

replaced by the existence of a generalized time function. Note that this is a weak condi-

tion than being distinguishing since any distinguishing spacetime admits a generalized time

function. More precisely we prove:

Theorem 6.6. Let (M, g) be a spacetime which admits a complete conformastationary vector

field K. Then, it admits a standard splitting (6.35) if and only if (M, g) admits a generalized

time function. Moreover, in this case, (M, g) is causally continuous.

Proof. Suppose (M, g) admits a standard splitting. From [14, Theorem 3.2], it is

known that (M, g) is causally continuous. Hence it admits a time function. Conversely,

suppose (M, g) admits a generalized time function. As K is timelike conformal, there exists

a conformal metric g∗ to g such that ζ is Killing for (M, g∗) and g∗(ζ, ζ) = −1. Hence K

is geodesic and (M, g∗, ζ) is a Hubble-isotropic spacetime (with vanishing expansion). From

Theorem 6.3, (M, g∗) is distinguishing and so is (M, g). From Theorem 6.5, (M, g) admit a

standard splitting and is causally continuous.

Theorem 6.7. Let (M, g, ζ) be a chronological Hubble-isotropic spacetime with positive (resp.

negative) expansion. If ζ is complete then (M, g) is stably causal.
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Proof. Suppose (M, g) is not strongly causal. Then from Theorem 6.3, there exists

two distinct points x, z ∈M such that (x, z) ∈ J+ and (z, x) ∈ J+. Since (z, x) ∈ J+, there

exists two sequences (xn)n and (zn)n converging respectively to x and z such that ∀n, xn ∈

J+(zn). We consider first the case the expansion is non negative (the non positive case is

analogous). As (x, z) ∈ J+, there exists a future directed causal curve γ joining x and z. The

curve γ is a null curve otherwise z will be contained in I+(x) and since (z, x) ∈ J+, (M, g)

would contained a closed timelike curve in contradiction with the chronological assumption.

∀s ≤ 0, φs◦γ is a causal curve. Suppose that ∀ s ≤ 0, φs◦γ is a null curve then the real-valued

function s 7−→ g(dφs(γ
′), dφs(γ

′)) vanishes identically on (−∞, 0). The contradiction follows

from the fact that its derivative is 2
nΘ[g(dφs(γ

′), dφs(γ
′)) + g2(ζ, dφs(γ

′)] (6.34), which is

nowhere zero as Θ never vanishes and dφs(γ
′) is lightlike. So there exists s0 < 0 such that

φs0 ◦ γ is a causal curve with timelike part which means that φs0(z) ∈ I+(φs0(x)). Using

(z, x) ∈ J+ and Lemma 6.1, we get also (φs0(z), φs0(x)) ∈ J+. This contradicts again the

chronological assumption. Hence (M, g) is strongly causal and in particular distinguishing.

Since ζ is complete then past reflectivity or future reflectivity hold on (M, g) (Theorem 6.2).

So (M, g) is stably causal.
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Poincaré. 1 (2000) 543-567
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[13] M. Gürses, M. Plaue and M. Scherfner On a particular type of product manifolds and shear-free cosmo-

logical models, Class. Quantum Grav. 28 (2011), 175009.

[14] M. A. Javaloyes and M. Sánchez, A note on the existence of standard splittings for conformally stationary

spacetimes, Classical Quantum Gravity, 25 (2008) no.16, 168001,7.

[15] Kriele, M. The structure of chronology violating sets with compact closure, Class. Quantum Grav. 6,

1607–1611 (1989)

[16] W. Hasse and V. Perlick,On spacetimes with an isotropic Hubble law, Class. Quant. Grav. 16 (1999),

2559-2576.

[17] W. Hasse, Geometrische Auswertungsmethoden für kosmologische Beobachtungen, Ph.D. thesis, TU

Berlin (in German), 1991.

[18] S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press,

1973.

[19] E. Minguzzi, Non-imprisonment conditions on spacetime, J. Math. Phys. 49 (2008) 062503-1-062503-9.

[20] E. Minguzzi and M. Sánchez, The causal hierarchy of spacetimes. Recent developments in pseudo-

Riemannian geometry, 299–358, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008.
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