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EXISTENCE AND STABILITY FOR A LAMÉ SYSTEM WITH TIME

DELAY AND INFINITE MEMORY

A. BENIANI, KH. ZENNIR∗, A. BENAISSA, AND S. BOULAARES

Abstract. We pursue the investigation started in a recent paper [10] and later [2] con-

cerning the wave equations with elasticity operator. We prove the existence of solutions for

Lamé system in three-dimension bounded domain with time delay term by using semi-group

theory. We also study the exponential stability of solutions by means of an appropriate Lya-

punov functional.

1. Introduction and related results

Let us define the elasticity operator ∆e, which is the 3 × 3 matrix-valued differential

operator by

∆eu = µ∆u+ (λ+ µ)∇(div u), u = (u1, u2, u3)T

where µ, λ are the Lamé constants which satisfy

µ > 0,

λ+ µ ≥ 0. (1.1)

It is well known that for the case λ+ µ = 0, ∆e = µ∆ gives the Laplacian operator.
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In this paper, we consider the following Lamé system with time delay term and infinite

memory:

u′′(x, t)−∆eu(x, t) +

∫ +∞

0
h(s)∆u(x, t− s)ds+ ku′(x, t− τ) = 0 in Ω× R+. (1.2)

Eq.(1.2) supplemented with initial and boundary conditions

u(x,−t) = u0(x, t), in Ω,

u′(x, 0) = u1(x), in Ω,

u′(x, t− τ) = f0(x, t− τ), in Ω× (0, τ),

u = 0, on ∂Ω× R+.

(1.3)

Here Ω is a bounded domain in R3 with smooth boundary ∂Ω and (u0, u1, f0) are given initial

data. Let

h(s) =


h1(s) 0 0

0 h2(s) 0

0 0 h3(s)

 (1.4)

where hi : R+ → R+ are given functions which represent the dissipative terms.

The qualitative studies of viscoelastic wave equations/systems have been many studied by

many mathematicians and many results have been obtained in the last few years (see [1], [2],

[3], [4], [5], [7], [9], [12]).

Without delay, a single viscoelastic wave equation was cosidered by [11] in the following

Cauchy problem: u′′ −∆xu+
∫ t

0 g(t− s)∆u(s, x)ds = 0 in Rn × R+,

u(x, 0) = u0(x) u′(x, 0) = u1(x) on Rn.
(1.5)

For a not necessarily decreasing relaxation function, the authors obtained a polynomial decay

rate of solutions for compactly supported initial data. In [7], the authors studied the following

equation :

u′′ −∆u+

∫ t

0
h(t− s)∆u(s, x)ds+ b(x)u′ + |u|p−1u = 0, Ω× R+. (1.6)
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Here b : Ω −→ R+ is a function, which may vanish on a part of the bounded domain Ω. By

assuming b(x) ≥ b0 on w ⊂ Ω and for two positive constants ζ1 and ζ2 such that

− ζ1h(t) ≤ h′(t) ≤ −ζ2h(t) (1.7)

under some geometry restrictions on w, the authors obtained an exponential decay result.

In [5],the author established and extend the result in [6], under weaker conditions on both

a and g, to a system where a source term is competing with the damping term. In order

to compensate the lack of Poincare’s inequality in Rn and for a wider class of relaxation

functions, Zennir in [15] used weighted spaces to establish a very general decay rate of

solutions for viscoelastic wave equations of Kirchhoff-type in

ρ(x)
(
|u′|q−2u′

)′ −M(‖∇xu‖22)∆xu+

∫ t

0
h(t− s)∆xu(s)ds = 0, x ∈ Rn, t > 0 (1.8)

where q, n ≥ 2 and M is a positive C1 function satisfying for s ≥ 0,m0 > 0,m1 ≥ 0, γ ≥ 1,

M(s) = m0 +m1s
γ and the function g : R+ −→ R+ is of class C1 is assumed to satisfy

m0 − g = l > 0, g(0) = g0 > 0 (1.9)

where g =
∫∞

0 g(t)dt. In addition, there exists a positive function H ∈ C1(R+) such that

g′(t) +H(g(t)) ≤ 0, t ≥ 0, H(0) = 0 (1.10)

and H is linear or strictly increasing and strictly convex C2 function on (0, r], 1 > r.

Bchatnia and Daoulatli [1] considered the case of the Lamé system in a three-dimensional

bounded domain with local nonlinear damping and external force, and obtained several

boundedness and stability estimates depending on the growth of the damping and the external

forces. The control region considered in [1] satisfies the famous geometric optical condition

(GOC).

In Section 2, one of the main goal is to prove the global existence and uniqueness of solutions

of (1.2)-(1.3). Section 3 is devoted to state and prove the main results of this work, that is,

the stability of the system (1.2)-(1.3).

2. Well-posedness and uniqueness of solution

To prove the well-posedness and uniqueness of solutions of (1.2)-(1.3) using semi-group

theory, we first consider the following hypothesis:
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A1: The functions hi is integrable on R+ and is such that

µ−
∫ +∞

0
hi(s)ds > 0 and∞ > αi =

∫ +∞

0
hi(s)ds > 0 i = 1, 2, 3. (2.11)

A2: The function h is of class C1(R+) and satisfies

h′i(s) ≤ γih(s) ∀s ∈ R+ i = 1, 2, 3. (2.12)

for a positive constants γi.

Following a methods developed in [8], [13], we consider two new auxiliary variables η and z,

such that 

η(t, s) = u(t)− u(t− s) ∀t, s ∈ R+

η0(s) = η(0, s) = u(0)− u0(s) ∀s ∈ R+

z(t, ρ) = ut(t− τρ) ∀t ∈ R+, ∀ρ ∈ (0, 1)

z0(ρ) = z(0, ρ) = f0(−τρ) ∀ρ ∈]0, 1[

(2.13)

Then, we have 
ηt(t, s) + ηs(t, s) = ut(t) ∀t, s ∈ R+

η(t, 0) = 0 ∀t ∈ R+

(2.14)

and 
τzt(t, ρ) + zρ(t, ρ) = 0 ∀t ∈ R+,∀ρ ∈ (0, 1)

z(t, 0) = u′(t) ∀t ∈ R+

(2.15)

By combining (1.2) and (2.13), we obtain the following equation:

u′′ −
(
µId−

∫ +∞

0
h(s)ds

)
∆u− (λ+ µ)∇div u−

∫ +∞

0
h(s)∆ηds+ kz(t, 1) = 0 in Ω× R+

(2.16)

where

Id =


1 0 0

0 1 0

0 0 1

 (2.17)
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Let the Hilbert spaces Lh(R+, (H1
0 (Ω))3) defined by

Lh(R+, (H1
0 (Ω))3)) =

{
v = (v1, v2, v3)T : R+ → (H1

0 (Ω))3,

∫ +∞

0
hi(s)‖∇vi(s)‖2ds < +∞

}
supplemented with the inner product

〈v, w〉Lh =

3∑
i=1

∫ +∞

0
hi(s)

∫
Ω
∇vi(s).∇wi(s)dxds

for some w = (w1, w2, w3)T and

L2(]0, 1[, L2(Ω)) =

{
v :]0, 1[→ L2(Ω),

∫ 1

0
‖v(ρ)‖2dρ < +∞

}
,

endowed with the inner product

〈v, w〉L2(]0,1[,L2(Ω)) =

∫ 1

0

∫
Ω
v(ρ).w(ρ)dxdρ.

Next, we will rewrite the system (1.2)-(1.3) in the following related system:
Ut(t) = AU(t) ∀t > 0,

U(0) = U0,

(2.18)

where U = (u, ut, η, z)
T , U0 = (u0, u1, η0, z0)T ∈ H

H = H1
0 (Ω)× (L2(Ω))× Lg(R+, H1

0 (Ω))× L2(]0, 1[, L2(Ω)).

The operator A is linear and given by

A =


0 1 0 0

∆e −
(∫ +∞

0 h(s)ds
)

∆ 0
∫ +∞

0 h(s)∆ds −µ

0 1 −∂s 0

0 0 0 − 1
τ ∂ρ


. (2.19)

The domain D(A) of A is given by

D(A) =
{
W = (w1, w2, w3, w4)T ∈ H,AW ∈ H, w3(0) = 0 and w4(0) = w2

}
.

The well-posedness and uniqueness of the problem (2.18) is given in.

Theorem 2.1. Let the assumption (A1) and (A2) hold. Then, the system (2.18) has a

unique weak solution for any U0 ∈ H, such that

U ∈ C(R+,H).
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If U ∈ D(A), then the solution of (2.18) satisfies (classical solution)

U ∈ C1(R+,H) ∩ C(R+, D(A)).

Proof. We prove that A : D(A) → H is a maximal monotone operator; that is, A

is dissipative and Id − A is surjective. Indeed, a simple calculation implies that, for any

V = (v1, v2, v3, v4)T ∈ D(A),

〈AV, V 〉H =
∑3

i=1

〈
∆ev

i
1 −

∫ +∞
0 hi(s)∆v

i
3ds− kvi4(1), vi2

〉
+ (λ+ µ)〈div v2, div v1〉

+
∑3

i=1(µ− αi)〈∇vi2,∇vi1〉+
〈
−∂v3

∂s + v2, v3

〉
L2
g

+ τ |µ|
〈
− 1
τ
∂v4
∂ρ , v4

〉
L2(]0,1[,H)

≤ 1
2

∑3
i=1

∫ +∞
0 h′i(s)

∫
Ω |∇v

i
3|2dxds ≤ 0.

(2.20)

since gi nonincreasing. This implies that A is dissipative. On the other hand, we prove

that Id − A is surjective. Indeed, let F = (f1, f2, f3, f4)T ∈ H we show that there exists

V = (v1, v2, v3, v4)T ∈ D(A) satisfying

(Id−A)V = F. (2.21)

This is equivalent to

v2 = v1 − f1,

v3 + ∂v3
∂s = f3 + v1 − f1,

v4 + 1
τ
∂v4
∂ρ = f4,

(∆e + (1 + |k|)Id)v1 +
∫ +∞

0 h(s)∆v3ds = (1 + |k|)f1 + f2 − kv4(1).

(2.22)

Noting that the second equation in (2.22)2 with v3(0) = 0 admits a unique solution

v3 = (s0 ey(f3 (y) + v1 − f1 )dy) e−s (2.23)

Eq.(2.22)3 with v4(0) = v2 = v1 − f1 has a unique solution

v4 =

(
v1 − f1 + τ

∫ ρ

0
f4(y)eτydy

)
e−τρ. (2.24)
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By (2.23) and (2.24) the Eq(2.22)4 becomes

(l∆e + (1 + |k|) + e−τk)Id)v1 = f̃ , (2.25)

where

l =

∫ +∞

0
h(s)e−s

(∫ s

0
eydy

)
ds = 1−

∫ +∞

0
h(s)e−sds

and

f̃ = f2 + (1 + |k|+ e−τk)f1−
∫ s

0
g(s)e−s

(∫ s

0
ey∆(f3(y)− f1)dy

)
ds− τke−τ

∫ 1

0
f4(y)eτydy.

We have just to prove that (2.25) has a solution w1 ∈ H2(Ω) ∩H1
0 (Ω) and replace in (2.23),

(2.24) and the first equation in (2.22) to obtain V ∈ D(A) satisfying (2.21). So we multiply

(2.25) by a test function ϕ1 ∈ (H1
0 (Ω))3 and we integrate by parts, obtaining the following

variational formulation of (2.25):

a(v1, ϕ1) = L(ϕ1) ∀ϕ1 ∈ (H1
0 (Ω))3, (2.26)

where

a(v1, ϕ1) =
∫

Ω

(
v1.ϕ1 +

∑3
i=1(µ− αi)∇v1.∇ϕ1 + (λ+ µ)div v1.div ϕ1

)
dx

+
∫

Ω(1 + |k|) + e−τk)Id)v1.ϕ1dx

(2.27)

and

L(ϕ1) =
∫

Ω

(
f2 + (1 + |k|+ e−τk)f1 − τke−τ

∫ 1
0 f4(y)eτydy

)
ϕ1dx

+
∫

Ω

∫ s
0 h(s)e−s

(∫ s
0 e

y∇(f3(y)− f1)dy
)
ds.∇ϕ1dx.

(2.28)

It is clear that a is a bilinear and continuous form on (H1
0 (Ω))3× (H1

0 (Ω))3, and L is a linear

and continuous form on (H1
0 (Ω))3. On the other hand, (1.1) and (2.11) imply that there

exists a positive constant a0 such that

a(v1, v1) ≥ a0‖v1‖(H1
0 (Ω))3 , ∀v1 ∈ (H1

0 (Ω))3,

which implies that a is coercive. Therefore, using the Lax-Milgram Theorem, we conclude

that (2.26) has a unique solution v1 ∈ (H1
0 (Ω))3 . We then conclude that the solution v1 of

(2.26) belongs into (H2(Ω) ∩ H1
0 (Ω))3 and satisfies (2.25). Consequently, using (2.23) and

(2.24), we deduce that (2.21) has a unique solution V ∈ D(A), this ensured that Id − A

is surjective. Eqs.(2.20) and (2.21) inform us that −A is maximal monotone operator. By

Lummer-Phillips theorem (see [14]), we deduce that A is an infinitesimal generator of a linear

C0-semigroup on H.
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3. Stability results

We now define the classical energy of any weak solution u of (1.2)-(1.3) at time t as

Eu(t) =
1

2

∫
Ω

(
3∑
i=1

(µ− αi)|∇ui|2 + (λ+ µ)|div u|2 + |u′|2
)
dx+

τ |k|
2

∫
Ω

∫ 1

0
z2(t, ρ)dρdx

The modifed energy functional of the weak solution u is defined by

E(t) = Eu(t) +
1

2
h ◦ ∇η, ∀t ∈ R+ (3.29)

where

h ◦ ∇η =
3∑
i=1

∫ +∞

0
gi(s)

∫
Ω
|∇ui(x, t)− ui(x, t− s)|2dxds (3.30)

The next theorem is our main stability result.

Theorem 3.1. Assume that (A1), (A2) and (1.1) hold. Then there exists a positive constant

δ0 independent of k such that, if

|k| < δ0,

then, for any U0 ∈ H , there exist a positive constants δ1 and δ2, such that the solution of

(2.18) satisfies

E(t) ≤ δ2e
−δ1t ∀t ∈ R+. (3.31)

The proof of Theorem 3.1 based on several Lemmas. The next Lemma means that our

problem is dissipatif.

Lemma 3.1. The functional (3.29) satisfies, along the solution u of (1.2)-(1.3),

E′(t) ≤ 1

2
h′ ◦ ∇η + |k|

∫
Ω
|u′(t)|2dx, ∀t ∈ R+. (3.32)

Proof. The multiplication of (1.2) by u′, integrating by parts over Ω, we get easily

(3.32).

In order to introduce an appropriate Lyapunov functional, we introduce the estimates.

Lemma 3.2. The functional

φ(t) =

∫
Ω
uu′dx, ∀t ∈ R+ (3.33)

satisfies for any ε > 0

φ′(t) ≤
∫

Ω |u
′|2dx−

∑3
i=1 (µ− ε− αi)

∫
Ω |∇ui|

2dx

−(λ+ µ)
∫

Ω |div u|2dx− k
∫

Ω z(t, 1).udx+ c1
4εh ◦ ∇η.

(3.34)
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Proof. By differentiating (3.33) and using (2.16), and (3.30), we obtain

φ′(t) =
∫

Ω |u
′|2dx−

∑3
i=1 (µ− αi)

∫
Ω |∇ui|

2dx− (λ+ µ)
∫

Ω |div u|2dx

+|k|
∫

Ω z(t, 1).udx−
∑3

i=1

∫ +∞
0 hi(s)

∫
Ω∇ui.∇ηidxds.

(3.35)

By using Cauchy-Schwarz and Young’s inequalities for the last term of (3.35), we obtain

−
∫ +∞

0 h(s)
∫

Ω∇u.∇ηdxds ≤ ε
∫

Ω |∇u|
2dx+ c1

4εh ◦ ∇η. (3.36)

Inserting the last inequalities in (3.35), we obtain (3.34).

Lemma 3.3. The functional

ψ(t) = −
3∑
i=1

∫ +∞

0
hi(s)

∫
Ω
u′i.ηidxds, ∀t ∈ R+. (3.37)

satisfies for any ε > 0

ψ′(t) ≤ −
∑3

i=1(αi − ε)
∫

Ω |u
′
i|2dx+ ε

∫
Ω

(
|∇u|2 + |div u|2

)
dx

+ c1
ε h ◦ ∇η −

c2
ε h
′ ◦ ∇η + k

∫
Ω z(t, 1).

(∫ +∞
0 h(s)ηds

)
dx.

(3.38)

Proof. Multiplying (2.16) by
∫ +∞

0 h(s)η(t, s)ds and integrating over Ω, we get

0 =
∑3

i=1

∫ +∞
0 hi(s)

∫
Ω u
′′
i .ηidxds

−
∑3

i=1

∫
Ω (µ∆ui + (λ+ µ)∇div ui)

(∫ +∞
0 hi(s)ηids

)
dx

+
∑3

i=1

∫
Ω

(∫ +∞
0 hi(s)∆ηids

)(∫ +∞
0 hi(s)ηids

)
dx.

(3.39)

By using the fact that, ∂tη(t, s) = −∂sη(t, s) + u′(t), we find∑3
i=1

∫ +∞
0 hi(s)

∫
Ω u
′′
i ηidxds

=
∑3

i=1

(
∂
∂t

∫ +∞
0 hi(s)

∫
Ω u
′
iηidxds−

∫ +∞
0 hi(s)

∫
Ω uiη

′
idxds

)

= −ψ′(t)−
∑3

i=1 αi
∫

Ω |ui|
2dx+

∑3
i=1

∫ +∞
0 hi(s)

∫
Ω ui∂sηdxds.

(3.40)

By the fact that lim
s→+∞

hi(s) = 0 and ηi(t, 0) = 0, integration with respect to s, we obtain

3∑
i=1

∫ +∞

0
hi(s)

∫
Ω
u′′i ηidxds = −ψ′(t)−

3∑
i=1

αi

∫
Ω
|u′i|2 +

3∑
i=1

∫
Ω
u′i

(∫ +∞

0
hi(s)∂sηids

)
dx

(3.41)
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Exploiting (3.39) and (3.41), we deduce that

ψ′(t) = −
∑3

i=1 αi
∫

Ω |ui|
2 + k

∑3
i=1

∫
Ω z(t, 1).

(∫ +∞
0 hi(s)ηids

)
dx

−
∑3

i=1

∫
Ω u
′
i

(∫ +∞
0 h′i(s)ηids

)
dx

+
∑3

i=1

∫
Ω ((µ− αi)∇ui + (λ+ µ)div ui)

∫ +∞
0 hi(s)∇ηidsdx

+
∑3

i=1

∫
Ω

(∫ +∞
0 hi(s)∇ηids

)
.
(∫ +∞

0 hi(s)∇ηids
)
dx.

(3.42)

Thanks to Cauchy-Schwarz and Young’s inequalities to get

−
3∑
i=1

∫
Ω
u′i

(∫ +∞

0
h′i(s)ηids

)
dx ≤ ε

3∑
i=1

∫
Ω
|u′i|2dx−

3∑
i=1

hi(0)

4ε
h′i ◦ ∇ηi. (3.43)

3∑
i=1

∫
Ω
∇ui

∫ +∞

0
hi(s)∇ηidsdx ≤ ε

3∑
i=1

∫
Ω
|∇ui|2dx+

3∑
i=1

αi(1− αi)2

4ε
hi ◦ ∇ηi

and

3∑
i=1

∫
Ω

(∫ +∞

0
hi(s)∇ηids

)2

dx ≤ αihi ◦ ∇ηi.

Then, the proof is completes.

Lemma 3.4. Let us define functional

I(t) =

∫ L

0

∫
Ω
e−2τρz(t, ρ)dρdx, ∀t ∈ R+ (3.44)

satisfy

I ′(t) ≤ −2e−2τ

∫
Ω

∫ 1

0
|z(t, ρ)|2dρdx+

1

τ

∫
Ω
|u′|2dx− e−2τ

τ

∫
Ω
|z(t, 1)|2dx. (3.45)

Proof. By Eq.(2.15), the derivative of I gives

I ′(t) = 2
∫ 1

0 e
−2τρ〈z′(t, ρ), z(t, ρ)〉dρ

= − 2
τ

∫ 1
0 e
−2τρ〈∂ρz(t, ρ), z(t, ρ)〉dρ

= − 1
τ

∫ 1
0 e
−2τρ ∂

∂ρ
‖z(t, ρ)‖2dρ.

(3.46)

Then by the fact that z(t, 0) = u′(t), we have

I ′(t) = −2

∫
Ω

∫ 1

0
e−2τρ|z(t, ρ)|2dρdx+

1

τ

∫
Ω
|u′|2dx− e−2τ

τ

∫
Ω
|z(t, 1)|2dx,

which leads our result, since −e−2τ1ρ ≤ −e−2τ1 , for any ρ ∈ (0, 1).
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Now, we are ready to prove our main stability results (3.31).

Proof Let L(t) = N1E(t) +N2φ(t) +ψ(t) + I(t), for N1, N2 > 0. By definition of ϕ,ψ, I and

E, there exist two constants d1 and d2 such that

d1E(t) ≤ L(t) ≤ d2E(t). (3.47)

On the other hand, combining (3.32), (3.33), (3.37) and (3.45), we obtain

L′(t) ≤
(
N1
2 −

c1
ε

)
h′ ◦ ∇η +

(
N2c
4ε + c1

ε

)
h ◦ ∇η −

∑3
i=1(αi − ε−N2 − 1

τ )
∫

Ω |u
′
i|2dx

−(λ+ µ)
∫

Ω |div u|2dx−
∑3

i=1 (N2(µ− ε− αi)− (1 + ĉ)ε)
∫

Ω |∇ui|
2dx

−2e−2τ
∫

Ω

∫ 1
0 |z(t, ρ)|2dρdx− e−2τ

τ

∫
Ω |z(t, 1)|2dx

+k
〈
z(t, 1),−N2u(t) +

∫ +∞
0 h(s)ηds

〉
(3.48)

where ĉ > 0 satisfies ∫
Ω
|div u|2dx ≤ ĉ

∫
Ω
|∇u|2dx.

Next, the use of Cauchy-Schwarz and Young’s inequalities, we obtain

k
〈
z(t, 1),−N2u(t) +

∫ +∞
0 h(s)ηds

〉

≤ ε1‖z(t, 1)‖2 + k2

4ε1

(
N2‖u(t)‖+

∫ +∞
0 h(s)‖η(t, s)‖ds

)2

≤ ε1‖z(t, 1)‖2 + k2c
4ε1

(
N2

2 ‖∇u(t)‖2 + αi
∫ +∞

0 h(s)‖∇η(t, s)‖2ds
)

≤ ε1‖z(t, 1)‖2 + ε1k
2c6

(
‖∇u(t)‖2 + αi

∫ +∞
0 h(s)‖∇η(t, s)‖2ds

)
,

(3.49)

where c6 = max{N2
2 , αi}. We now choose 0 < ε < µ − max1≤i≤3{αi} and 0 < ε1 <

min1≤i≤3{αi}. Next, we choose N2 and ε2 such that 0 < N2 < min1≤i≤3{αi} − ε1 − 1
τ

and 0 < ε2 < N2
1+ĉ(µ − max1≤i≤3{αi} − ε). These choices imply that αi − ε1 − N2 and

(N2(µ− ε− αi)− (1 + ĉ)ε2) are positive constants. Then, we obtain, for some β, c3, c4 > 0,

L′(t) ≤ −βE(t) +

(
N1

2
− c3

)
h′ ◦ ∇η + c4h ◦ ∇η, ∀t ∈ R+. (3.50)

Finally, we can choose N1 large enough so that N1
2 − c3 ≥ 0

L′(t) ≤ −βE(t) + c4h ◦ ∇η, ∀t ∈ R+. (3.51)
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If (2.12) is satisfied, for any i = 1, 2, 3, then

hi ◦ ∇ηi ≤ −
1

δi
h′i ◦ ∇ηi. (3.52)

Combing (3.53) and (3.52) imply that

L′(t) ≤ −βE(t)− c5h
′ ◦ ∇η, ∀t ∈ R+. (3.53)

where c5 = c4 max{δi}

Let F = L+ c5E. Using (3.32), we get

F ′(t) ≤ −βE(t) ∀t ∈ R+. (3.54)

Because L ∼ E, then F ∼ E. Therefore, (3.54) implies that

F ′(t) ≤ −c′F (t) ∀t ∈ R+

for some c′ > 0. By integrating this differential inequality, we get

F (t) ≤ F (0)e−c
′t, ∀t ∈ R+

Thus, thanks to F ∼ E, we get (3.31).
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