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STABILITY OF A MICROTEMPERATURES DAMPED
POROUS-ELASTIC SYSTEM WITH NONLINEAR DISSIPATION AND
NONLINEAR DISTRIBUTED DELAY

MOHAMED HOUASNI * AND ABDELKARIM KELLECHE

ABSTRACT. In this paper, we consider a one-dimensional porous-elastic system with a non-
linear dissipation and a nonlinear distributed delay subjected to microtemperatures effects.
We establish an energy decay rate by using a perturbed energy method and some properties
of convex functions, but regardless of the wave speeds of the system. Our result is new and
extends some previous results to nonlinearity case.
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1. INTRODUCTION

In this present work, we aim to study the following nonlinear damped porous elastic system

having a nonlinear distributed delay

PUy — Py — by + yhy (ug) + ff p(s)he (ug(z,t —s))ds =0, in (0,1) x Ry,

Jou — 0pzp + kiwy + bug + o =0, in (0,1) x Ry, (1.1)

Twy + kow + k19tr — k3wzy = 0, in (0,1) x Ry.
subjected to microtemperature effects and nonlinear damping, with the mixed boundary
conditions

u(0,t) = p(1,t) = w(0,t) = uy(1,t) = ©.(0,t) = wy(1,t) = 0. (1.2)
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126 M. HOUASNI AND A. KELLECHE

The evolution equations for one-dimensional theories of porous materials with temperature

and microtemperature is given by

pug =Ty, Jou = Hy + G,

e =4z, PE =Pe+q—Q.
Here G is the equilibrated body force, T is the stress, H is the equilibrated stress, 7 is the
entropy, ¢ is the heat flux, P is the first heat flux moment, @ is the mean heat flux and F is
the first moment of energy. The variables u and ¢ are, respectively, the displacement of the

solid elastic material and the volume fraction. The constitutive equations are

T = pug + b9 + yury — B0, H = 6¢y — dw,
G:_bum_£¢+m9_o-¢t7 n:Bux+Ce+m¢a

q = Kby + k1w, P = —kowy,

Q = k3w + K40, pE = —aw — do,.

Where p, J, 1, b,7,6,d,&,m, T, 3, ¢, K, K1, K2, K3, k4 and « are the constitutive coefficients whose
physical meaning is well known. It is worth noting that # and w are the temperature and
microtemperatures, respectively.

The coefficients of the system, in one-dimensional case, satisfy
£€>0, 6>0, pu>0 p>0J>0, and pu&>0b°,

where b is a real number different from zero. On the other hand, we assume that the thermal
conductivity xk and the thermal capacity ¢ are positive, which means that thermal effects are
present. While, if microtemperatures are considered, parameters o, k2 and x are positive. ~y
and o are nonnegative. If ¢ > 0 and v > 0, it means that the system is subjected to porous
dissipation and viscoelastic dissipation, respectively.

In the absence of thermal effect (i.e K = 0), Dridi and Djebabla [17] considered the following
system
PU = Ulgy + by — ¥0,, in (0,1) x Ry,
Jptr = 0pzy — bug — E@ — dwy +mb — By, in (0,1) x Ry,

cly = — YUy — mpr — k1w, in (0,1) X Ry,

awy = koWgy — kaw — k10, — dpyy, in (0,1) X Ry,
with Neumann (on ¢, #)-Dirichlet (on u,w) boundary conditions. In which they proved that
the combination of porous-viscosity and microtemperature stabilized the system exponen-

tially regardless of the coefficients of system. In [36], Saci and Djebabla are concerned with
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the following system

( PU = gy + by — YO, in (0,1) x (0, 00),

Jpi = 0pgy — buy — Ep — dw, +mb, in (0,1) x (0, 00),
by = —yuge — mpy — krwg, in (0,1) x (0, 00),

awy = koWgy — kaw — k10, — dpys, in (0,1) x (0, 00),

they improved the result obtained in Dridi and Djebabla [I7] by proving that a unique
dissipation given by microtemperatures is sufficiently strong enough to produce exponential
stability in absence of both thermal conductivity and the porous dissipation (i.e K = 8 = 0),

under a new stability number given by

By neglecting the nonlinear damping (i.e. v = 0) and the nonlinear distributed delay, we

obtain the system

PUy — gy — b, =0, in (0, L) x (0, 00),
Jou — 00zg + kiws + bug + @ =0, in (0, L) x (0,00), (1.4)
Twt + kow + k1ot — kwez = 0, in (07 L) X (07 OO)

This system has been studied by Santos et al. [37] with fractional dissipation damping
(o¢¢) in the second equaton, they concluded that the case (i.e o = 0) is an interesting open
problem. Apalara [4] provided a solution to this last by considered the system (1.4)) under

the following Neumann (on ¢)-Dirichlet (on u,w) boundary conditions
uw(0,t) = u(1,t) = pz(0,t) = pz(1,t) = w(0,t) = w(1,t) = 0, > 0,

and established the same results of Santos et al. [37] in the absence of porous dissipation
(i.e 0 = 0), he showed that the unique dissipation given by microtemperature damping is

strong enough to exponentially stabilize the system if and only if the wave speeds of the

-4

Now, let us recall some results about the effect of nonlinear damping mechanisms on similar

system are equal

problems, Apalara [3] considered the following porous system:

puUtt — fUzy — bpy =0, z € (0,1),t >0,
J(btt — (5(253530 + bum +§¢ + Oé(t)g ((f)t) = O, T € (0, 1),t > 0,
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the term «(t)g (¢;) is the nonlinear damping, which subjected on the second equation. He
established a general and an explicit decay rate result for the energy of system ((1.5)) with the

condition of same speed of propagation, that is

p_o

S=5 (1.6)

It is worth mentioning that in the case of u = b = &, the system ({1.5)) becomes

putt—u(ux—l—gb)wzo, $€(0,1)7t>0,
J¢tt - 5¢xx +M(u:v + ¢) —l—a(t)g (¢t> = 07 T e (07 1)>t > 07

(1.7)

which is a Timoshenko system with nonlinear damping. Alabau-Boussouira [2] studied
with «(t) = 1 and proved a general semi-explicit formula for the decay rate of the energy
at infinity with the condition (L.6). Mustafa and Messaoudi [28] considered with all
the coefficients p = p = J = § = 1 and obtained a general and an explicit decay result,
depending on « and g.

Among the most important property of a physical system is the time delay by which the
response to a subjected force is delayed in its effect (see [38]). The original study of this
effect on a system was first introduced by Datko et al. [I5] in 1986 when they showed that
the presence of the delay may not only destabilize a system which is asymptotically stable
in the absence of the delay but may also lead to ill-posedness (see also [30] and [32]). On
the other hand, it has been established that voluntary introduction of delay can benefit
the control (see [I]). Choucha et al. [I3] considered a porous thermoelastic system with
microtemperature effect, temperatures and distributed delay terms. they proved the well
posedness of the system, and established an exponential stability of its solution. Moumen et
al. [29] are concerned with one-dimensional porous—elastic systems with nonlinear damping,
infinite memory and distributed delay terms, they proved that the solution energy has an
explicit and optimal decay for the cases of equal and nonequal speeds of wave propagation.
We refer the interested readers to [3, Bl [7, 10, 16 18 19, 20, 2], 22] 25, 27, 33], B4, 40, [41]
and references therein for details discussion on the subject.

According to these observations and results above, one can ask the following questions:

1) Is it possible to stabilize system with nonlinear damping and nonlinear distributed
delay (nonlinearity case) sebjected in the first equation? If so, does the stabilization of the
system depend on a relationship between the coefficients of the system?

2) What assumptions can be made about h; and hg to ensure the stabilization of the

system?
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In the present work, we shall give an answers to these questions by considering under
appropriate assumptions on the weight of the delay and without imposing any restrictive
growth assumption on the damping term at the origin, we establish an energy decay rate by
using a perturbed energy method and some properties of convex functions. These arguments
of convexity were introduced and developed by Cavalcanti et al. [12], Daoulatli et al. [14],
Lasiecka [23], and used by Liu and Zuazua [26] and others. We obtain our results regardless
of the wave speeds x of the system which was mentioned in [4, 37]. Our result then extends

some previous results to nonlinearity case.

2. PRELIMINARIES

In this section, we shall present some definitions and preliminaries for well study of our
problem (1.1). Throughout this paper, c or ¢;, i = 1,2 represent a positive constant and C),
is used to denote the Poincaré-type constant.

Concerning the delay term, we introduce the following variable:
ug(x, t —rs) :=Hx,rt,8), x€(0,1), re(0,1), s€ (r1,72), t >0,
which satisfies
st (x,r t,s) + O (x,7r,t,8) =0, x € (0,1),r € (0,1),s € (11,72) ,t > 0.

Consequently, system (1.4) becomes

(

putt — gz — by + vha(we) + f:f u(s)ha(9(x, 1,1, 5))ds = 0, in (0,1) x Ry,

Jptr — 00za + k1wy + buy +Ep =0, in (0,1) x Ry,

Twy + kow + k1@ — kswg, = 0, in (0,1) x Ry,

s (z,r,t,8) + 9, (z, 7, t,8) = 0, in (0,1) x (0,1) x Ry X (11, 72), (2.8)
u(z,0) = uo(x), ug(x,0) = ur(x), p(x,0) = @o(x), pi(z,0) = ¢1(x),

u(x,t — ps) = Iz, rt,s), r€(0,1),s € (11,72),

Hx,r,0,8) = fo(z,—7rs), x € (0,1),s € (11, 72) .

\

With the mixed boundary conditions
u(0,t) = p(1,t) = w(0,t) = uy(1,t) = p(0,t) = wy(1,t) = 0. (2.9)

Next, we suppose that hy and hgy satisfy the following assumptions:
(Al). h; : R — R is a continuous and non-decreasing function with h (0) = 0 such that

there exist positive constants ki, k2 and [ and a convex, continuous and increasing function
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h:Ry — Ry of class C! (Ry) N C?(]0, +o00[) satisfying: h” = 0 on [0,1] or ( A’ (0) = 0 and
R” >0 on (0,]) such that
h(s* + hi(s))
k15?2 < hi(s)s

< hi(s)s for [s| <I,
(2.10)
< kos? for |s| > I.

(A2). hy : R — R is an odd non-decreasing Lipschitz function such that there exist

positive constants a, ai, ¢ satisfying
a1sha(s) < Ty(s) < agshi(s), (2.11)

where Ty(s) = [ ha(r)dr.
In addition, for address the case of nonlinear delay, we assume there exists a positive

constant o such that

T2
<ocand 0 <y —oag (2 —71) — 042/ p(s)ds. (2.12)

T1

— o1

()l

Remark 2.1. 1) Hypothesis (A1) implies that shi(s) > 0, for all s # 0.
2) The hypothesis (Al) with | = 1 was first introduced by Lasiecka and Tataru [24].

3) By the mean value Theorem for integrals and the monotonicity of ha, it follows that

Iy(s) = /OS ho(r)dr < sha(s), (2.13)

consequently, a; < ag < 1.
Let us now give an example for functions hy and hs.

Example 2.1. Let the function hi(r) = r%,r € (0,1] (i.e l = 1), and xk > 1. hy(r) = rr*!

which is strictly positive. In the neighborhood of 0 , let us set the function h defined by
h(r) =cur =,

where ¢, = (2/1)_%1. So, for k =1, h is linear on [0,1], otherwise strictly convex on (0,1],

R'(0) =0 and h” >0 on (0,1]. In addition, we have
() = QT

Now, let r be near 0, can be deduced from fact that v + r?® < 2kr?. Next, suppose
we set the non-decreasing odd function ha(r) = 37513 (hy, > 0), then rha(r) < rhi(r) on
(0,1]. Then, follows automatically, that is Ta(r) = 3r% < rho(r) = 3751, since
Do(r) < rhi(r), taking o < % and as > aq, 15 deduced.
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3. WELL POSSEDNESS

In this section, we shall study the well-posedness of solutions to problem ([1.1))-(1.2). We
give existence and uniqueness results for our system using the semigroup theory. First, let us
denote by ¥(.) to ¥(z,rt,s), (1) to ¥z, 1,t,s) and 9(0) to J(x,0,t,s). Next, if we denote

U = (u,v, 0,1, w,9)T, where v = u;, and ¥ = ¢y, then, system can be rewritten as follows:

Ut+AU:0,t>0,

U(l‘,O) = UO(:E> - (U(],ul,gOo,gOl,wo,fo)T

The operators A : D(A) C H — H is given by

—v
By B+ han) 1 [ pl)ha(9(1)ds
-
AU: )
_9 b £ k1
JPrx T JUz + 5P+ W

1
50

and H is the energy space given by

H =H0,1) x L?(0,1) x H}(0,1) x L?*(0,1) x H(0,1) x L*((0,1) x (0,1) x (11, 72)),
such that

H}(0,1) = {ueH'(0,1):u(0)=0},

HL(0,1) = {pe H'0,1):p(1)=0}.
The domain of A is given by

U= (uv,¢¢,w7)|

u,w € H?(0,1)N HL(0,1),v € H}(0,1),
D(A) =14 o€ H*0,1)NH0,1),9 € H(0,1),
0 € Hy((0,1); H'(0,1)),

uz(1) = we (1) = ¢, (0) =0
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For any U = (u,v, ¢, ¥, w,0)T € H,U = (@1, 0, @, 1, 0, 5)T € H, we equip ‘H with the inner
product defined by

1 1 1 1
(U, Uyy = u/ uxﬂxdx—i-p/ vz?dx+£/ gocﬁd:v+6/ Oy Prdx
0
1

1
—I—b/ (ugp + Uzp) dx + J wv,/;dx + ’7'/ wwdx
0

+a/// s 1) ()9 dsdrda. (3.14)

Remark 3.1. Under the condition af > b2, it is easy to see that defines an inner
product.
Note that

£0% + 2bugp + puy = = [(u€ — b°)@” + (puz + bp)?] > 0. (3.15)

=~

For any U,U € D(A), we have

(A+mI)U — (A4+mI)U
— (0 —=0)+m(u—0)

( B Uy — Tng) — (0 — Ba) + L (a(v) — ha(3)) )
(0= 0) + 1 [7 (s) [ha(9(1)) = ha(I(1))] ds
- —<¢—w>+m(so—5ﬁ) ,
8 (fon = Baz) Y (e~ Wa) + § (9 = &) + 5 (wy — W) +m (4~ D)
5 (g — W) + 52 (w = @) + 2 (= )+ (w — D)
%(&—@)er(ﬁ—ﬁ)

then, using (3.15)) and the fact that h; is a non-decreasing function, we get for Lj,the

Lipschitz constant for hs,

(A+mI)U — (A+mI)T, (U—U)}H

_ m/ e — )2+ E(p— B)2 4 26 (up — ) (9 — B) | d
>0

+m/01 (J (‘/"@2%(@—%)2+55(sox—@)2> dx

+ /01 (k:g (Wy — Wa)? + (7m0 + k) (w — {17)2) dx

+ <m - ‘2’/: ,u(s)ds) /01 (v — 52 da
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1
T /0 (h1(v) — (D)) (v — B)da

>0

to /01 (v —7) / p(s) (he (9(1)) — hs (3(1)) ) dsda
+7 /01 / u(s) (9(0) — 5(1)) dsd

1 1 T2 N2
—l—am/ / / sp(s) (19 - 19) dsdrdzx.
0 0 T1

Then, by using Young’s inequality, then for small € and sufficiently large m, we obtain

(A+mI)U - (A+mI)U, (U—U)m

1
> m/(; :u(um*ﬂx)2+f(¢*@)2+2b(ux*a‘r)(9@*¢) dx
>0

b [ (7(0-9)" + 0 - 87+ (02 - 502 o
n /01 (kg (wy — @)% + (71 + k) (w — u7)2) dz

+<m—je—;/:u(s)ds> /Ol(v—5)2dm

1 1 N2
+Um/ / / sp(s) (19 - 19) dsdrdx
0 0 T1

> 0,

which implies that A is a m-accretive operator. One can prove that A4+ m/ is a maximal
monotone operator. for this latter, it is sufficient to demonstrate that R(A + A) = H for
a large constant A\. From the fact that D(A) is dense in H (see Proposition 7.1 in [11]) and

the nonlinear semigroup theory [8], 9, [39], we can give the following well-posedness result.

Proposition 3.1. Assume (Al)-(A2) hold and let Uy € H, then there exists a unique
solution U € C (Ry,H) of problem (2.8). Moreover, if Uy € D(A), then

UeC(Ry,D(A))NCH R, H).
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Now, let us recall few of some known algebraic and integral inequalities.

Lemma 3.1. ([I1], Holder’s Inequality ) Let 1 < p < oo, assume that f € LP(Q) and
g € L9 (Q) then, fg € L' (Q) and

/Q Foldz < |If1, g, (3.16)

Lemma 3.2. [II] (Poincaré’s inequality) Suppose I is a bounded interval. Then there exists

a constant C (depending on |I| < o) such that
Hu||W1,p([) <C Hu,HLP(I) , for allu € Wol’p (I). (3.17)

Lemma 3.3. ([11], Cauchy-Schwarz Inequality) Every inner product satisfies the Cauchy-

Schwarz inequality

(1, 2) <z [|2] - (3.18)
The equality sign holds if and only if 1 and x5 are dependent.

Lemma 3.4. [11](Young’s Inequality) For all a,b € RT, we have

b2
ab < ea® + = (3.19)

where € is any positive constant.

Next, Let us denote by hA* the conjugate function in the sense of Young of a convex function

h (see [6], p. 64), that is,
h* (p) = sup (pt — h(t)).
teRy

Assume that A” > 0, then for p > 0 a given number, h* is the Legendre transform of h (see

Liu and Zuazua [20]), which is given by
X -1 -1
h*(p) =p[h] " () = R([W] " (), (3.20)
and which satisfies the following inequality

Lemma 3.5. [31](Young’s Inequality for the convex functions) Let h a convez function, h*

its conjugate in the sense of Young, we have

pr < h(z)+ h*(p) Vp,x >0. (3.21)
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Remark 3.2. Thanks to , along with (-/ we write

h(h2 (9(1))) = 9()ha(d(1) — h(I(1)) (3.22)

< (1 —aq)¥(1)ha(¥(1).
Next, for g > 0 we define the functions J and K as below

t, if B/ =0 on [0,]
J(t) = (3.23)
th'(eot), if K'(0) =0 and h” > 0 on (0,

and

K(t):/tl L s (3.24)

respectively.

Remark 3.3. The relation and the fact that h(0) = 0 and (h')~!, h are increasing

functions yield
W (p) <p W] (») Vp>0. (3.25)

4. GENERAL DECAY

In this section, we give some lemmas allow us to prove the stability result o the solution.

We define the functional energy of solutions of problem ([1.1)-(1.2) as follows:

1
Et) : == / put2 + Jgpf + 5g0§ + fch + 2bugp + ,uui +7w? | dz
0 N
>0

/ / / ()dsdrdz. (4.26)

Lemma 4.1. Let (u,,w) be a solution of (2.8)-(2.9). Then the energy functional E(t),

satisfies

E'(t)

IN

—kz/lw dx—kg/l w?dx
—c [/ wghy (g dm+/ / (0(1))dsdx

0. (4.27)

IN



136 M. HOUASNI AND A. KELLECHE

Proof. We multiply (2.8); by wu, (2.8)2 by ¢, and (2.8)3 by w and then integrate over (0, 1),

we get

1d [
2dt J, pu® + Jg7 + 007 4 £0% + 2bupp + pul, + Tw’

>0

—l—v/ ughy (uy dx+/ / s)urho(9(1))dsdx
= —k2/ 2dx—k3/ w2dz.
0 0

Now, by multiplying the fourth equation in (2.8]) by o |u(s)| he(d(x, 7, t,s)), and integrating

da (4.28)

over (0,1) x (71, 72) % (0, 1), using integration by parts, the definition of I'g, and the boundary

conditions, gives

ﬂf/“/zwgm@w@mmwx::_ﬂ//“/ 08t
o T —— /mwwm
o[ oo
o [ om0
o [ ot
A AT

The combination of (4.28)- (4.29) gives us

E(t) = —’y/ uthy (ut)dx—// s)ugha(¥(1))dsdx

1
—U/ / )dsdx—kg/ w2dx
0
1
+U/ / s)Ta (ug dsdzkg/ 2dz. (4.30)
0

So, by return to the convex conjugate of 'y, taking p = ho(9(1)) and x = uy, we get

uiha(9(1))

IN

5 (ha(9(1))) + T (ue) , (4.31)

where, T3 (ha(9(1)) = 9(1)h2(9(1)) — To(9(1)). (4.32)
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Using (4.30)- (4.32) and (A2), we obtain

Et) < —fy/ urhy (wy da:—l—/ / (9(1))dsdz
+(c+1) // $)Te (ug) dsdx — (o + 1 // 1))dsdz
—k:g/ wdm—kg/ w2dx
0 0
T2 1
< — [7—0420’(72—7’1)—a2/ ,u(s)ds}/ ughy (ug) dex
T1 0
a1o
/ / T — (1= () H(ha(0(1))dsda
1
—k:g/ w dx—kg/ wgdx.
0 0
Finally, by using ([2.12]) we obtain (4.27]). O

Lemma 4.2. Let (u, p,w) be a solution of (2.8)-(2.9). Then, the functional

d 1 1 T
Li(t) = 4/0 wpudr — T/O w </0 ut(y)dy> dx,t >0,

satisfies, for n,d >0 and ¥Vt > 0

1 1 1
It < (cn—gd>/ 2dm—|—d/ utdz:+(3cl+2077)/ w?dx (4.33)
P/ Jo 0
+cl/ (got—|—g0 —|—w ) dx + = / / (9(1))dsdx
0

c

— h dx.
+277 ; T (ue)

Proof. Differentiating I;(¢) and integrating by parts, we get
d ! pd 1 bd !
L) = - —— | uldr—— 2d 4.34
0 = 5[ -t w4/90ux (434

—ld h1 (ug udx—/ / ))dsdx
4p Jo

1 1
—i—k:g/ wyurdr + kg/ w (/ (y )dy) dx — kl/ orurdx
0 0

1
+ﬂ W dr + / wedx
P Jo

7 ([ i) ars T [ 7w ([ oty asas
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By using Cauchy-Schwarz inequality (3.18]), we obtain

IN

([ m(y)dy)Q
([ors)
([ roo 1>>dy)2 <

IN

()
( / () dx>
(/01 ha(9(1)) dx>2 dr < /Olhg(m))dx.

2

1
s/ uj da,
0

2 1
dxg/ h? (uy) de,
0

Next, On account of (2.13)), (3.21)), and (3.22)), we obtain

h2(9(x,1,t,5)) < 20(x, 1,t,5)ho(I(z, 1,t, 5)).

(4.35)

Then, using Young’s inequality (3.19)), Cauchy—Schwarz inequality and (4.35)), we get

bd

4p Jo
T
P Jo

1 x
kg/ w </ ut(y)dy> dx
0 0
1
—k1/ prurdr
0
1
kzg/ Wy dT
0

d 1
‘—7/ hi (u) udx
0

‘_fp /Olu/: () ha(9(1)dsd

puydx

Wy dT

b
ke wedx
P Jo

2 o ([ o)

L ([ an)os < 5[ [

IN

IN

IN

IN

IN

IN

IN

IA

IN

IN

dé‘ / wlde + 2 / (4.36)
A u dx—i—cl/ wdx (4.37)
16p Jo 0 7
d 1 1
/ utda;—l—cl/ w?dz, (4.38)
4 0
1
/ da;+01/ idz, (4.39)
0 0
widr + e | wide, (4.40)
0
e (1 1
/ h? (uy dm+cn/ uldzr, (4.41)
4n Jo 0
1
ncp/ u(s)ds/ uldx
/ / 1))dsdz,
/ / (9(1))dsda
+c77/ ulde, (4.42)
/ wlds + 2 / (4.43)
/ h? (uy d:r~|—c77/ w?d, (4.44)
(9(1))dsdx
—I—cn/ w?dz. (4.45)
0
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By substituting (4.36])-(4.45)) into (4.34]), we get (4.33)). O

Lemma 4.3. Let (u, p,w) be a solution of (2.8)-(2.9). Then the functional

1 b 1 x
Iy(t) = J/ oppdr — 2P Uy </ w(y)dy) dz,t >0,
0 HoJo 0

satisfies, for any €1 > 0, the following estimate

5 1 1 1 1
It) < —/ @idm—/\/ <p2da:+51/ u?da:—i—cQ/ w?dx (4.46)
2.Jo 0 0 0
3 1 1
<J+CQ>/ dx—l—sl/ h? (ug) dz
0 0
+2€1/ / (9(1))dsdzx,

where A = (5— %)

Proof. By differentiating I5(t), we obtain

1 1 b 1 z
L(t) = J/ sOttcpderJ/ pidx — p/ U (/ sot(y)dy> dx
0 0 moJo 0

b 1 T
2P Uit (/ cp(y)dy) dx.
HJo 0

Next, using integrating by parts together with the boundary conditions, we get

I(t) = —5/ goxdx—(§—b2>/ 2da:+J/
—kl/o wepdr — / ( </Ox got(y)dy> dx
—Eb ; ha (u) </0x sO(y)dy) dz

_7;5 01 </O:c (p(y)dy) /7:2 11(s)ha(9(1))dsdz.

Thanks to Young’s, Poincaré (3.17)) and Cauchy-Schwarz’s inequalities and (4.35]), we obtain

1 s 1 1
—kl/ wepdr < / goidx—l—cz/ wzda;
0 2 Jo 0
1 z 1 1
—b—p im (/ got(y)dy> dr < 51/ ufdas—}— 62/ cp?dx,
mJo 0 0 €1 Jo
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th/ hi (uy) </ t(y)dy) dx €1 /1 h? (ug) dz + 62/01 i,
_’Ylb/ / )</Oxgot(y)dy> dsda gl/ / 1))dsdzx

IA

IA

_|_7 d:c
0
< 251/ / (9(1))dsdx
—i—CQ da:.
€1 Jo

Then, we find that

5 [ 1 1 1
It) < —/ cpf/,dx—)\/ g02dm+61/ u?daz—l—@/ w2dx
2 Jo 0 0 0
€2 by g
+ <J+ ) / pidx +51/ hi (ut) dz
0 0
+2€1/ / (¥(1))dsdz,

which is (4.46) with A = ¢ — & > 0, O

Lemma 4.4. Let (u,p,w) be a solution of @—(@ Then, the functional

I3(t) = — /Olw (/Ox wt(y)dy> dz,

satisfies, for any ea,e3,e4 > 0, the following estimate

1 1 1
Ity < (-k —1-252)/ cp?dx—i—sg(}’p/ uid:}:—l—&;/ o2dx (4.47)
0 0
(b7)2 52 /1 2
I NI R d
te ( 462 + 483 464 + 462 + ! 0 war
1
+€3/ Yid.
0

Proof. By differentiating I5(t), integrating by parts and using (2.8)), we obtain

1 1 1
I(t) = —Jk‘l/ gofd:v—i—/{:l/ w2dx+7'b/ wudz (4.48)
0 0 0

1 1 T
—Jkg/ wypde —§ | w </ @(y)dy> dx
0 0 0
1 T 1
—i—Jk:Q/ w </ gpt(y)dy> dx — 6/ wpd.
0 0 0
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Using Young’s, Cauchy-Schwarz’s and Poincaré inequalities, we find

1 1 (Tb)2 1
Tb/ wudr < EQCp/ uidx—l—/ w?dr, (4.49)
0 0 de2 Jo
1 52 1
—5/0 wezdr < 53/0 daz+4€3/ w?dz, (4.50)
1 x 1 ¢ [
—£ ; w (/0 gp(y)dy) dr < 54/0 ©?dx + 464/ w?dz, (4.51)
1 T 1 ]€2 1
Jk‘Q/O w </0 got(y)dy> dr < 52/0 2dx + 4—2 w?dz, (4.52)
1 1 K1
Estimate (4.47) follows by substituting (4.49)-(4.53) into(4.48). O

Lemma 4.5. Let (u, p,w) be a solution of (2.8)-(2.9), then, the functional

1 1 T
I, (t) :/0 /0 / sp(s)e ¥ Ta(9(.))dsdrdz, (4.54)

satisfies the estimate

Ijt) < —aje” // (9(1))dsdzx
s ( / ()ds> / wghy () dz
e / / / 9(1))dsdrdz. (4.55)

Proof. Differentiating Iy, using the fourth equation in ({2.8]), (A2), and the fact that ¢#(0) =

u¢, we obtain

no - | 1 / 1 / " ()9 )T ha(9(.))dsdrdz
_ / / / e~ ha(9(.))dsdrdz
- - / / / () [T To(9(.)] drdsda
/ / / $)e T (0(.))dsdrda
_ / / ))dsda + / / $)Ts (ur) dsda
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_ / ' / 1 / " sp(s)e= T (9(.))dsdrdz
oo // (0(1))dsda
/// (.))dsdrdx

s / )i /O wghy (up) dz.

Using the fact that —e™*" < —e™* for all r € [0, 1], we then obtain (4.55)).

IN

Now, we define the Lyapunov functional £(¢) by
3
L(t)=NE®t)+> NiL(t) + L),

i=1

here, N, N1, No and N3 are positive constants.

(4.56)

Lemma 4.6. Let (u,p,w) be a solution of (@-@ Then, there exist two positive con-

stants p1 and uo such that the Lyapunov functional satisfies
wE() < L(t) < peE(t), Vvt > 0.

Proof. From (4.56)), we have

L(t) - NE@®)| < le/ lugu| de + 7Ny /01 w(/oxut(wdy) da

+JN2/O lprp| dz + bpivz /01 w </0-x @(y)dy)
+N3TJ/1 w </z t(y)dy) dx
/ / / e *"| To(V(.))dsdrdz.

By using Young’s, Poincaré and Cauchy-Schwarz inequalities, we obtain

dzx

[£(t) — NE(t)] < vE(t),
which yields

(N —7)E(t) < L(2)

IN

(N +7)E(2),

this completes the proof.

(4.57)

(4.58)
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Theorem 4.1. Let (g, p1,%0,%1,00,q0, fo)T € H be given. Assume that Al — A2 are
satisfied, then there exist c1,co,c3 > 0 for which the (weak) solution of problem @—(@)
satisfies

E(t) <K (ot +¢3), Vt>0. (4.59)

Proof. By differentiating equation (4.56)), then recalling Eqs. (4.27)), (4.33)), (4.46), (4.47)
and (4.55)), we have

1 1
L'(t) < (—ksN +e1Ny + cQN2)/ w2dx + (—koN + (3¢1 + 2¢n) Nl)/ w?dx
0 0

(br)? €2 /1 2
N. —_— =+ —= 4k d
+ IN3co ( 10 + 463 + ) + 462 + 1 ; wdx

1 T2 1
+(dN1 + Ngel)/ urdx + <a2/ p(s)ds + ﬁ — Nco> / uthy (ug) dzx
0 T 0

1

+ ((cn — 8p> Ny +e9C Ng) /0 uszdr+ (277 + N2€1> /0 hi (ut) dx

1 5 1
—I—(—/\NQ +c1 N1 + N3€4) / (pzd.’E + <_2N2 + N3€3> / Soid.%'
0 0

3¢ 1
+ <N1C1 + <J + 2) Ny + N3 (—ki + 262)) / pida
€1 0

; ((zglzvg ' N) ~ Nep - a) / 1 [ yana(o(0)asis
™ /0 1 /0 1 / su($)Do(9(.))dsdrdz. (4.60)

At this point, we set €1 = 1, g9 = W and choose 77 small enough so that

ud

< —
= 8cp’

Next, take N7 large enough so that,
ud
en—— | N1 +Cp <O0.
8p
Let us fix N7 and select e3 = ¢4 = +~, choose Ny large enough so that
1)
—§N2+1<Oand — ANy +c¢1 N1 +1<0.

Fix N5 and select 5 so small that

choose N3 large enough so that

Nicy + (J + 302) Ny + N3 (—kl + 282) <0.
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Finally, we choose N large enough so that
—k3sN + c¢1 N1 + ca2N2 < 0,
ko + (e +20m) N1 + Nyes (42 + £+ £ 4+ 2+ 1) <0,
(251]\72 + %) — Ncg—a1e7™ <0,

ag [7% u(s)ds + 1; — Neo <0.

All these choices with the relation (4.60f) leads to

T

L(t) < -\ fol (u% t 4?4+l tuwt+o fol fo 3;L(5)F2(19(.))d5d7") dx (461)
—A2 fol (wi +w?) do +c (fol uide + fol hi (uy) dfl?) ; €A1, A2 > 0. '

On the other hand, from (4.26]) and by using Young’s inequality, we obtain

B(t) < § Jy (puf + T} + (u+ b)) + 662 + (€ + b)o? + Tw?) da
+3 fol fol f:f su(s)To(9(.))dsdrdx
<or (fy (@ + 6} + 2+ @3+ +w) dn)
+uio fol fol [ sp(s)T2(9(.))dsdrdz, vy > 0,

which implies that

1 1 T2
- / <u? +2 i+ 2+t + 0/ / s,u(s)FQ(ﬁ(.))dsdr> dz
0 0

T1

< —vE(t),ve > 0. (4.62)

The combination of (4.61]) and (4.62)) gives

1 1 T2
L't < —a / (uf + @2 +w? + (up + ) + 02 + U/ / Su(s)Fg(ﬁ(.))dsdr> dx
0 0

T1
1 1
+c (/ u?da: +/ h% (ut)dac)
0 0

< e+ [ @+ 8 @) de) (4.63)

Let us define the following sets
Yu={x€(0,1): |u(x,t)] >} and O, = (0,1) \X,.
Now, we estimate the last term in the right-hand side of . First, we have
/01 (u% + h? () dz = /2 (u% + h? (ur)) da

+ /@u (uf + hi(w)) dz.
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Using A1 and (4.27)), we easily show that

IN

/ (uf + h(u)) dx

u

(kt +k2)/ ughy (ug) dz
By

IN

1
(kit +k:2)/ ughy (ug) dz
0

< —cE(t). (4.64)

If b =0 on [0,]: This implies that there exist k{, k, > 0 such that k]s* < hy (s) s < kbs>
for all s € Ry, and then (4.64) is also satisfied for |us (x,t)] < [, then on all (0,1). From
(4.63), (4.64]), we arrive at

(L(t) +cE(t) < —cJ (E(t)), ¥t>0, (4.65)

where J is defined in (3.23)).

If B'(0) = 0 and A" > 0 on (0,I]: Since h is convex and increasing, h~! is concave and

increasing, by using A1, the reversed Jensen’s inequality for concave function (see [35], p.

61), and (4.27)), we obtain,

IN

/ (uf + h? (ur)) da / L (uhy (wy)) dz
o, o,

IN

/ ht (uthy (ug)) de
Oy

1O, 7" (/@w |@1w‘uth1 (ue) dm)
chl ( /@ w wehi (u) da:)
ch™! </01 uthy (ut)> dx

ch™! (=cE (1)). (4.66)

IN

IN

INA

IN

Therefore, from (4.63)), (4.64]) and (4.66)), we find that

L'(t) < —cE(t) + ch Y (—cE (t)) — c¢E (t), Vt>0.

By using Young’s inequality (3.21)), (3.25)) and the fact that

E' <0, and ' >0,
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we get for g9 > 0 small enough and ¢y > 0 large enough,
(W (0B (1)) [£(t) + cE(t)] + o E(t)]
= B (t) 1" (0B (1)) [L(t) + cE(t)]

+h (e0E (1)) [L£'(t) + cE (t)] + G E(1)

< —ch! (e0E(t)) E(t) 4 ch! (eoE(t)) k™ (=cE (t)) + L E (1)

< —ch (2B (1)) E(t) + ch* (W (s0E(t))) — cE (t) + chE(t)

< —ch (e0E(t)) E(t) + ceoh’ (e0 E(t)) E(t)

< —cl! (e0E(t)) E(t) = —cJ (E(1)). (4.67)

Now, let us define the following functional:

. { L(t) + cE(t) it h" =0 on [0,]],

W (c0E () [L(t) + cE(t)] + coE(t) if 1'(0) =0 and A" > 0 on (0,1].

Using (4.57), we have
g ~E,

and exploiting (4.65) and (4.67]), we easily deduce that

G (t) < —cJ (E(t)), Vt>0.

Next, let us set

where 0 < € < € and € is a positive constant satisfying

g < éE(t), vt > 0.
We also have
M~ E, (4.68)
and for t > 0
M (t) < —ceJ (M (1)). (4.69)

Noting that K' = —1/J (see (3.24))), we get from (4.69)
M (t) K" (M (t)) > ce, Yt >0.
A simple integration over (0,¢) then yields

K (M(1) > K (M(0)) + czt.
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Then, since K ! is decreasing , we deduce that

M(t) < K™'(cet+ K (M(0)))

< K1 (Cgt —{—63) .

From this latter inequality and (4.68]) we obtain easily (4.59). Then the proof is completed.
[l
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