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ON I CONCURRENT CLASS OF SEQUENCES

DEBJANI RAKSHIT ID ∗ AND PRASENJIT BAL ID

Abstract. In this paper, we demonstrate the I-concurrent relation between sequences

and the equivalence relations produced from it. A few unique features of these equivalence

classes are investigated. Finally, we show that the collection of all such equivalence classes

of all I-convergent sequences under the I-concurrent relation generates a metric space that

is isometric with the set of all constant sequences.
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1. Introduction

Natural density, additionally referred to as asymptotic density, is a fundamental notion in

number theory and analysis that measures how large a subset of natural number is relative

to the set of all natural numbers. For M ⊆ N, the natural density of M is denoted by δ(M)

and is defined as

δ(M) = lim
n→∞

|k ≤ n : k ∈ M |
n

.

This notion holds significance not just in pure mathematics but also in disciplines such as

statistical mechanics, probability theory and computer science, where understanding the dis-

tribution of numbers may reveal patterns and behaviors inside complex systems. Steinhaus
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[18] and Fast [7] in 1951, developed the idea of statistical convergence independently by imple-

menting the idea of natural density (also known as asymptotic density). The statistical con-

vergence of a sequence ⟨xn⟩ to x0 is attained if, for any ε > 0, the set {k ∈ N : d(xk, x0) ≥ ε}

has a density of zero. Numerous mathematicians, such as Fridy [8, 9], Salat [15], Rath and

Tripathy [14], Bal [2], Sarkar et al. [17] have conducted extensive research on this conver-

gence. In 2000, Kostyrko et al. [11] raised the concept of I-convergence, while I Cauchy

sequences was initially defined by Nabiev et al. [13]. I-convergence is an extension of statis-

tical convergence depending on the ideal’s (I’s) framework, where I is a family of subsets of

the set of natural numbers. Although there have been a lot of generalizations of statistical

convergence, we found I-convergence the most interesting one, where I is an ideal. In the re-

cent literature, there have been several publications on I-convergence [3, 4, 5, 6, 10, 12, 3, 16],

including some outstanding contributions by Bal [1].

In this study, we seek to establish a relationship between two sequences of the same nature

by means of I-convergence. In order to accomplish this, we introduce the I-concurrent

relation, which establishes an equivalence relation on the collection of all sequences in a

metric space. Also, the collection of all equivalence classes produced by that equivalence

relation on the set of all I -convergent sequences constructs a metric space.

2. Preliminaries

Prior to studying I concurrent sequences in depth, it is important to provide some basic

definitions and notions. In this section, we briefly discuss the fundamental instruments and

mathematical concepts required to comprehend the key findings.

Definition 2.1. [13] A family I of subsets of a non empty set X is called an ideal if and

only if ∅ ∈ I, I is closed under finite union and I is closed under subset. Also a family F of

subsets of a non empty set X is called a filter if and only if ∅ ̸∈ F , F is closed under finite

intersection and F is closed under superset.

If X /∈ I and I ̸= ∅, then the ideal I is considered as an non-trivial ideal. If I is an

ideal, then the collection F = F(I) = {X \M : M ∈ I} is a filter and called the dual filter

of the ideal I. If I is a non-trivial ideal which contains every singleton subset of X, then I

is considered to be an admissible ideal. ‘I’ will represent an admissible ideal throughout the

paper.
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Definition 2.2. [13] Let I be an admissible ideal defined on the set N of natural numbers

and (X, d) be a metric space. For a sequence ⟨xn⟩, if for each ε > 0,

{k ∈ N : d(xk, x0) ≥ ε} ∈ I,

then ⟨xn⟩ is considered to be I-convergent to x0.

Definition 2.3. [13] Let I be an admissible ideal defined on the set N of natural numbers

and (X, d) be a metric space. For a sequence ⟨xn⟩, if for every ε > 0 there exists a m ∈ N

such that

{n ∈ N : d (xn, xm) ≥ ε} ∈ I,

then ⟨xn⟩ is considered to be an I-Cauchy sequence in X.

3. On I Concurrent Sequences

Using the concept of I-convergence, we want to create an equivalence relation on the set

of all sequences that will separate the sequence space into disjoint equivalence classes. These

classes of sequences will have sequences that are similar in nature, making it easier to study

each one freely.

Theorem 3.1. If the sequences ⟨xn⟩ and ⟨yn⟩ satisfy the I-Cauchy criteria in a metric space

(X, d), then the sequences ⟨zn = d(xn, yn) : n ∈ N⟩ will satisfy the I-Cauchy criteria in a

metric space (X, d1) where d1(a, b) = |a− b|.

Proof. Since ⟨xn⟩ and ⟨yn⟩ satisfies I-Cauchy criteria, therefore, A1 = {n ∈ N : d (xn, xm1) <

ε
2} ∈ F(I), for some m1 ∈ N and A2 = {n ∈ N : d (yn, ym2) <

ε
2} ∈ F(I), for some m2 ∈ N.

Let m = max{m1,m2}. Also, (A1 ∩ A2) ∈ F(I) and ϕ /∈ F(I), so (A1 ∩ A2) ̸= ϕ and for

all n ∈ (A1 ∩A2), we have

d1(zn, zm) ≤ d(xn, xm) + d(yn, ym) < ε,

i.e., {n ∈ N : d1(zn, zm) < ε} ⊇ (A1 ∩A2) ∈ F(I).

Therefore, ⟨zn⟩ fulfills I-Cauchy criteria in the metric space (X, d1). □

Definition 3.1. A sequence ⟨xn⟩ is said to be I concurrent to another sequence ⟨yn⟩ if the

sequence ⟨zn⟩ = ⟨d(xn, yn)⟩ is such that zn
I-lim−→ 0. That is, {n ∈ N : zn = d(xn, yn) ≥ ε} ∈ I.

Example 3.1. Let X = {0, 1}, equipped with the discrete metric σ(x, y) =


0, if x = y,

1, otherwise,

.

Consider the ideal Iδ = {A : δ(A) = 0} and the sequences {an}, {bn} and {cn} where
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an =


0, for n = k2, k ∈ N,

1, otherwise,

bn = 1 for all n ∈ N and cn =


1, for n = k2, k ∈ N,

0, otherwise.

For every ε > 0, {n ∈ N : σ(an, bn) ≥ ε} = {n = k2 : k ∈ N} ∈ Iδ, {n ∈ N : σ(bn, cn) ≥ ε} =

{n ̸= k2 : k ∈ N} ̸∈ Iδ and {n ∈ N : σ(cn, an) ≥ ε} = N ̸∈ Iδ. Thus, {an} and {bn} are I

concurrent to each other; whereas {cn} is I concurrent neither to {an} nor to {bn}.

Theorem 3.2. For two I concurrent sequences ⟨xn⟩ and ⟨yn⟩, if one sequence is I Cauchy,

then the other also satisfies the I-Cauchy criteria.

Proof. Let ⟨xn⟩ satisfy the I Cauchy criteria. Therefore, A1 = {n ∈ N : d(xn, xm) < ε
3} ∈

F(I). Since ⟨xn⟩ and ⟨yn⟩ are I concurrent, therefore A2 = {n ∈ N : d(xn, yn) <
ε
3} ∈ F(I).

Since (A1 ∩A2) ̸= ϕ and for all n ∈ (A1 ∩A2) there exists a m ∈ (A1 ∩A2) so that

d(yn, ym) ≤ d(yn, xn) + d(xn, xm) + d(xm, ym) < ε,

i.e., {n ∈ N : d(yn, ym) < ε} ∈ F(I) as (A1 ∩A2) ∈ F(I).

Therefore, ⟨yn⟩ also satisfies I-Cauchy criteria. □

Example 3.2. Two non I-Cauchy sequences can be I-Concurrent to each other. Let X =

[0, 2] and d(a, b) = |(a− b)| for all a, b ∈ X. Then (X, d) forms a metric space. Also consider

the sequences ⟨xn⟩ and ⟨yn⟩ of (X, d) where

xn =
[1 + (−1)n+1]

2

and

yn =


1, for n is odd,

1
n , for n is even.

Now take I = Ifin, the ideal containing all finite subsets of N, then neither ⟨xn⟩ nor ⟨yn⟩

satisfy I-Cauchy criteria.

But ⟨zn⟩ = ⟨d(xn, yn)⟩ where d(xn, yn) =


0, for n is odd

1
n , for n is even

is I-convergent to 0.

Since, {n ∈ N : zn ≥ ε} ∈ I

Therefore, ⟨xn⟩ and ⟨yn⟩ are not I-Cauchy but I-concurrent sequences.

Example 3.3. Again, if two sequences are I-Cauchy sequences, it does not imply that they

are I-concurrent. For example,
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Let X = [0, 2] and d(a, b) = |(a − b)| for all a, b ∈ X. Then (X, d) forms a metric space.

Also consider the sequences ⟨xn⟩ and ⟨yn⟩ of (X, d) where

xn =


2, for n = k2, k ∈ N,

1 + 1
n , otherwise

and

yn =


2, for n = k2, k ∈ N,

1
n , otherwise.

Now, if we take I = Iδ, the class of all subsets of N whose natural density is 0, then ⟨xn⟩

and ⟨yn⟩ are I-Cauchy sequences.

But ⟨zn⟩ = ⟨d(xn, yn)⟩ where d(xn, yn) =


0, for n = k2, k ∈ N,

1, otherwise.

is not I-convergent to

0.

That is, ⟨xn⟩ and ⟨yn⟩ are I-Cauchy but not I-concurrent to each other.

Theorem 3.3. Two sequences are I convergent to the same limit if and only if they are I

concurrent sequences, one of them being I convergent.

Proof. Let ⟨xn⟩ be I-convergent to the limit ℓ. Therefore, A1 = {n ∈ N : d(xn, ℓ) < ε
2} ∈

F(I).

Also, let ⟨xn⟩ and ⟨yn⟩ be I-concurrent. Therefore, A2 = {n ∈ N : d(xn, yn) <
ε
2} ∈ F(I).

Since (A1 ∩A2) ̸= ϕ and for all n ∈ (A1 ∩A2) we have

d(yn, ℓ) ≤ d(yn, xn) + d(xn, ℓ) < ε,

i.e., {n ∈ N : d(yn, ℓ) < ε} ∈ F(I) as (A1 ∩A2) ∈ F(I).

Therefore, ⟨yn⟩ is also I-convergent to the same limit ℓ.

Conversely, let ⟨xn⟩ and ⟨yn⟩ be two I convergent sequences converging to the same limit

ℓ. That is, B1 = {n ∈ N : d(xn, ℓ) <
ε
2} ∈ F(I) and B2 = {n ∈ N : d(yn, ℓ) <

ε
2} ∈ F(I). So

∀ n ∈ (A1 ∩A2) ⊂ N we have

d(xn, yn) ≤ d(xn, ℓ) + d(yn, ℓ) < ε,

i.e., {n ∈ N : d(xn, yn) < ε} ⊇ (A1 ∩A2) ∈ F(I).

Therefore, ⟨xn⟩ and ⟨yn⟩ are I-concurrent sequences. □
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Theorem 3.4. Let SX be the collection of all sequences on the metric space (X, d). Then

the I-concurrent relation ≈I-d forms an equivalence relation on SX .

Proof. Since for any ⟨xn⟩ ∈ SX , d(xn, xn) = 0, ∀n ∈ N. Therefore, ⟨d(xn, xn)⟩ is I-convergent

to 0. So every sequence is I-concurrent to itself. That is, the I-concurrent relation (≈I-d) is

a reflexive relation on SX .

Since for any ⟨xn⟩, ⟨yn⟩ ∈ SX , d(xn, yn) = d(yn, xn), ∀n ∈ N. Therefore, if ⟨xn⟩ is I-

concurrent to ⟨yn⟩ then ⟨yn⟩ is also I-concurrent to ⟨xn⟩. That is, the I-concurrent relation

(≈I-d) is a symmetric relation on SX .

Let ⟨xn⟩, ⟨yn⟩, ⟨vn⟩ ∈ SX , Now, d(xn, vn) ≤ d(xn, yn)+ d(yn, vn), ∀n ∈ N. It implies that if

⟨d(xn, yn)⟩ and ⟨d(yn, vn)⟩ are I-convergent to 0, then ⟨d(xn, vn)⟩ is also I-convergent to 0.

So if (xn) ≈I-d (yn) and (yn) ≈I-d (vn) =⇒ (xn) ≈I-d (vn), i.e., the I-concurrent relation

(≈I-d) is a transitive relation on SX .

∴ the I-concurrent relation (≈I-d) forms an equivalence relation on SX . □

Corollary 3.1. The set SX of all sequences of the space (X, d) splits into disjoint equivalent

classes under the I-concurrent relation (≈I-d), so that all the sequences of one class are

(i) Either I-convergent to the same limit or is not I-convergent.

(ii) Either I-Cauchy sequences or none of them are I-Cauchy.

Proof. This can be easily verified from the previous theorems. □

Let CX be the collection of all I-Convergent sequences of the metric space (X, d). Also

let ⟨xn⟩∗ = {⟨yn⟩ ∈ CX : ⟨yn⟩ ≈I-d ⟨xn⟩}, where ⟨xn⟩∗ denotes the equivalence class of ⟨xn⟩

under the I-concurrent relation (≈I-d).

We define σ(⟨xn⟩∗, ⟨yn⟩∗) = d′(⟨xn⟩, ⟨yn⟩) = I-limn→∞d(xn, yn)

Let CX
∗ denote the set of all equivalence classes ⟨xn⟩∗, where ⟨xn⟩ ∈ CX .

Theorem 3.5. The set of all equivalence classes CX
∗ forms a metric space with the metric

σ such that σ(⟨xn⟩∗, ⟨yn⟩∗) = I-limn→∞d(xn, yn).

Proof. Let ⟨xn⟩∗, ⟨yn⟩∗, ⟨zn⟩∗ ∈ CX
∗. So there is a ⟨xn⟩ ∈ ⟨xn⟩∗, ⟨yn⟩ ∈ ⟨yn⟩∗, ⟨zn⟩ ∈ ⟨zn⟩∗.

Now since d is a metric, ∀n ∈ N.

d(xn, yn) ≥ 0 =⇒ I-limn→∞d(xn, yn) ≥ 0

=⇒ σ(⟨xn⟩∗, ⟨yn⟩∗) ≥ 0 for all ⟨xn⟩∗, ⟨yn⟩∗,∈ CX
∗

Now σ(⟨xn⟩∗, ⟨yn⟩∗) = 0
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⇐⇒ I-limn→∞d(xn, yn) = 0

⇐⇒ ⟨xn⟩ and ⟨yn⟩ are I-concurrent to each other. So they belong to the same equivalence

class.

That is, ⟨xn⟩∗ = ⟨yn⟩∗.

Again, σ(⟨xn⟩∗, ⟨yn⟩∗) = I-limn→∞d(xn, yn) = I-limn→∞d(yn, xn) = σ(⟨yn⟩∗, ⟨xn⟩∗)

(Since d is symmetric).

∴ σ is symmetric.

Since d is metric, we have d(xn, yn) ≤ d(xn, zn) + d(zn, yn), ∀n ∈ N.

∴ I-limn→∞d(xn, yn) ≤ I-limn→∞d(xn, zn) + I-limn→∞d(zn, yn).

=⇒ σ(⟨xn⟩∗, ⟨yn⟩∗) ≤ σ(⟨xn⟩∗, ⟨zn⟩∗) + σ(⟨zn⟩∗, ⟨yn⟩∗)

Hence (CX
∗, σ) forms a metric space. □

Theorem 3.6. Let C ′
X = {{xn : xn = x,∀n ∈ N} : x ∈ X}. Then (C ′

X , d′) and (CX
∗, σ) are

isometry.

Proof. Let f : C ′
X → CX

∗ is a function defined by f(⟨xn⟩) = ⟨xn⟩∗ where ⟨xn⟩∗ = {{zn} ∈

CX : ⟨zn⟩ ≈I-d ⟨xn⟩}. Now σ(f(⟨xn⟩), f(⟨yn⟩)) = σ(⟨xn⟩∗, ⟨yn⟩∗) = d′(⟨xn⟩, ⟨yn⟩). There-

fore, f is an isometry.

Again f(⟨xn⟩) = f(⟨yn⟩) =⇒ ⟨xn⟩ = ⟨yn⟩ and for any equivalence class ⟨wn⟩∗ ∈ CX
∗

there exist a constant sequences ⟨wn⟩ ∈ C ′
X , i.e., f is a bijective mapping. Hence (C ′

X , d′)

and (CX
∗, σ) are isometry. □

4. Conclusion

An equivalence relation that splits the sequence space into disjoint equivalence classes

has been discovered on the set of all sequences. Sequences in these categories are of the

same kind with respect to I-convergence and I-Cauchy criteria. Further, a metric space is

obtained for the collection of all these equivalence classes. It is possible to study the classes

of point-wise convergence, uniform convergence, etc. independently if this idea is extended

to the sequences of functions.
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