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SOME REMARKS ON THE GENERALIZED MYERS THEOREMS

YASEMIN SOYLU

ABSTRACT. In this paper, firstly, we prove a generalization of Ambrose (or Myers) theorem
for the Bakry-Emery Ricci tensor. Later, we improve the diameter estimate obtained by
Galloway for complete Riemannian manifolds. To obtain these results, we utilize the Riccati

inequality and the index form of a minimizing unit speed geodesic segment, respectively.

1. INTRODUCTION

Let (M, g) be a complete Riemannian manifold of dimension n > 2 and let f be a smooth

function on M. By the Bakry-Emery Ricci tensor we mean
Ricy := Ric + Hessf, (1.1)

where Ric and Hessf are the Ricci tensor and the Hessian of f, respectively [2].
When f is a constant function, the Bakry-Emery Ricci tensor becomes the original Ricci
tensor. We recall Ambrose’s result [1], which gives an important generalization of the Myers

compactness theorem [13] for the original Ricci tensor as another variant.

Theorem 1.1. [1] If there exists a point p € M such that the condition

/0 " Ric(y/ (8), 7/ (1))dt = o (1.2)
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holds along every geodesic y(t) emanating from p € M, then manifold is compact.

In [19], Zhang proved the Ambrose’s compactness theorem for the Bakry-Emery Ricci

tensor given in (1.1)).

Theorem 1.2. [19] If there exists a point p € M such that every geodesic v(t) emanating

from p satisfies

/000 Ri(:f('y’(t),’y'(t))dt = 00, (1.3)

and f(x) < C(d(xz,p) + 1) for some constant C, where d(x,p) is the distance from p to x,

then M 1is compact.

Another generalization has been considered by Cavalcante-Oliveira-Santos in [3], where
the condition on f given in Theorem is replaced with a condition on the derivation of f

as follows:

Theorem 1.3. [3] Suppose that there exists a point p in a complete manifold M such that

every geodesic y(t) emanating from p satisfies

/OOO Ric; (v (t), 7/ (t))dt = oo, (1.4)

and % < 0. Then M is compact.

The proofs of the above theorems are based on the Riccati inequality and a careful analysis
of this inequality being different from calculus of variations. Moreover, these theorems do
not require that the original Ricci tensor and the Bakry-Emery Ricci tensor be everywhere
non-negative. However, these results cannot give an upper bound for the diameter of a
manifold.

Our first aim is to improve condition on the function f under the same Ricy assumption
as in the Theorem

On the other hand, Galloway [6] proved a perturbed version of Myers compactness theorem

by the derivative in the radial direction of some bounded function as follows:

Theorem 1.4 (Galloway). Let M be a complete Riemannian manifold and y be a geodesic

joining two points of M. Suppose that

Rie(+/ (1), /(1)) > a + % (1.5)
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holds along ~y for some constant a > 0, and | ¢ |< ¢ for some constant ¢ > 0. Then M is

compact and
diam(M) < g(c + /e +a(n —1)). (1.6)

Our second aim is to show that there is a sharper diameter estimate than Galloway’s
diameter estimate (|L.6]).

We are now ready to give our main theorems.

Theorem 1.5. Let (M, g) be a complete Riemannian manifold of dimension n > 2. Suppose

there exists a point p € M such that every geodesic y(t) emanating from p satisfies

| Rics (0,29t = oo, (1.7)
0
and f'(t) < 3(1 = 1) for all t > 1, then manifold is compact.

In the above theorem, we provide that the condition f/(¢) < 0 given in Theorem for

t = 1. In order to prove Theorem [1.5 we use the Riccati inequality.

Theorem 1.6. Let (M, g) be a complete Riemannian manifold and v be a geodesic joining

two points of M. Suppose that

Ric(v'(0).7/(1) 2 a+ 5 (18)

holds along ~y for some constant a > 0, and | ¢ |< ¢ for some constant ¢ > 0. Then M is

compact and

diam(M) <

SHES

(20 + /42 + aln — 1)7r2). (1.9)

The diameter estimate ([1.9)) above is sharper than ([1.6) by Galloway. In order to prove
above theorem, we use the index form of a minimizing unit speed geodesic segment. For

basic facts about this topic, we refer the reader to the book [8,/14]).

Remark 1.1. There exists many varied examples of compactness theorems involving the

original Ricci tensor and modified Ricci tensors; see for instance [4},5,/7,(9-112,|15-18].
2. PROOFS OF THE THEOREMS

Before stating our main results, we recall the definitions of gradient, Hessian and Laplacian
of any smooth function f € C*°(M) on a Riemannian manifold. The gradient, Hessian and

Laplacian are defined by

g(VfV)=V(f), (Hess(f))(V.W)=g(VyVf,W) and Af=1tr(VVf)  (2.10)
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for all vector fields V, W, respectively. The Riemannian curvature tensor is defined as
R(V,W)Z =VyVwZ - VwVvZ - Vw2, (2.11)

and the Ricci curvature as

Ric(V, W) = i g(R(E;, V)W, E)) (2.12)
=1

for all vector fields V, W, Z, where {E;}}' ; is an orthonormal frame of (M, g) Riemannian

manifold.

Proof of Theorem[1.5. We assume that M is a non-compact Riemannian manifold and
let v(t) be an unit speed ray starting from p. For every ¢ > 0, m(t) denotes the Laplacian
of distance function from a fixed point p € M. We know from some calculations with the

Bochner formula that this gives the following Riccati inequality

m?(t) + Ric(y/(t),~'(t)) < 0. (2.13)

m/(t) +

n—1
We consider a smooth function F'(t) defined by

B(t) = m(t) + (1) (2.14)
for all ¢ > 0, where ¢ € C°°(M). The derivation of F'(t) gets

F'(t) =m/(t) + {'(t). (2.15)
Combining and , we obtain

F'(t) = ¢'(t) + ﬁm%) + Ric(y/(),7'(t)) < 0. (2.16)

It is clear that we have

m(t) = F(t) = ¢(t), (2.17)

by (2.14]). Substituting (2.17)) into (2.16)), we obtain

1
n—1

F'(t) = ¢'(t) + (F(t) = ¢(#)” + Ric(+'(1),7'(1)) < 0. (2.18)

Using the essential inequality (z + y)? > O%leQ — éyQ holding for all real numbers z,y and
positive real number «, we get
(F(t)—¢@)” = F2(t) — =C3(b). (2.19)
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Substituting into and taking o = ﬁ > 0, we have
Ric(v/(t),7(t)) < —=F'(t) + ¢'(t) - %F%) + (). (2.20)
If we add (Hessf)(v/(t),7/(t)) to the both sides of inequality (2.20), we have
Ricy(v(t),7'(t)) < —F'(t) + ¢'(t) — %FQ(t) + (1) + (Hess (7' (1),7' (1)) (2.21)

Integrating both sides of the inequality (2.21f) from 1 to ¢, we obtain
¢

t t
/1 Ricy(v/(s),v'(s))ds < —F(¢) + F(1)— /1 %F%s)dw /1 (¢ +)ds (222

Therefore, under the assumption

/Ooo Ricg(7/(t),7/(t))dt = oo (2.23)
given in Theorem we have
t t
tlggo —F(t) —/1 %F2(s)ds +/1 (C’(s) + <2(8))d8 + f(t) = o, (2.24)

where f/ = % (v(t)) = g(Vf,). Here, multiplying by 1/n on both sides then yields

, 1 tr1 2 1 [ty Lo
lim —F(t)—/l (—F(s)) ds+n/1 (g (s)—i—C?(s))ds—l—;f (t) = oo (2.25)

t—oo n n

Because of (2.24]), given C' > 1 there exists ¢; > 1 such that

1 bt 2 1ty 1,
—F(t)—/l (1r(s) ds+n/1 (¢6)+ @)+ f =0 (22)

n n
for all t > ¢;.

On the other hand, under the assumption f(t) < 1(1—1) of Theorem E if the function

¢ is taken to be ((t) = 2%7 then we get the following inequality
1 ! 2
- — — > .
(1) /1 (nF(s)) ds>C (2.27)

for all t > t4.

Let us now consider an increasing sequence {t;} defined by
togr =t +C1E for £>1, (2.28)

such that {t;} converges to T :=t; + % as { — oo.

We claim the fact that —F(t) > nC* for all t > t,: To prove the claim, we use induction

argument. It is trivial from inequality (2.27]) for £ = 1. By induction, we get the claim for /.
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Then we must prove that —F(t) > nC**! for all t > t,,;. By means of the inequality (2.27)),

we obtain

t
—F(t) > nC’+1/ F2(s)ds
nJi
L[t

— F%(s)ds + 1 /t F2(s)ds

nJy ntg

1 t
/ F2(s)ds
nJy,

nC2(t —t,)

Y

Y

v

v

nC*(ty1 — tg) = nC*L, (2.29)

This proves the above claim.

From hence, we have

Jim —F(t) = =F(T) > lim nC*. (2.30)
—00

l—00

However, this result contradicts with the smoothness of F'(t). Namely, lim,_,p- —F(t)

= 00. This completes the proof of Theorem 0

On the other hand, under the same assumptions given in the Theorem we see that,

the above diameter estimate given by ((1.6) can be improved as follows:

Proof of Theorem|[1.6. Let p,q € M be two distinct point and v a minimizing unit speed
geodesic segment from p to g of length ¢ > 0. Let {Ey = +/,Es,..., E,} be a parallel
orthonormal frame along v and let h € C*°([0, ¢]) be a real-valued smooth function such that

h(0) = h(¢) = 0. Then, from the index form of 7, we have
n ¢
> I(hE;, hE;) / ((n R - h2Ric(7’,7’))dt. (2.31)
1=2 0
Using the assumption (|1.8)) given in Theorem in the integral expression (2.31)), we get

n ¢
SO UhELBE) < /0<(n—1)h’2— ah? h“jf)dt (2.32)

1=2

In the inequality 1' the term h2 d¢ equals to

2od¢ _d /
—hPs = = (h20) + 2hho. (2.33)

Integrating both sides of (2.33)), we get

L d¢ l L 0
/ —tht:2/ hh/ ¢dt < 2/ |hh/¢|dt < 2c/ |hh|dt. (2.34)
0 dt 0 0 0
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Thus, under the choice h(t) = sin(%), we have

> I(hE;, hE;) <
=2

% [(n—1)7? — al® + 4cl] . (2.35)

Since v is a minimal geodesic, we must take

al? —4el — (n—1)7® <0. (2.36)
This inequality gives
1
(< *(26 + /42 + a(n — 1)7r2>. (2.37)
a
This completes the proof of Theorem 0
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