
International Journal of Maps in Mathematics

Volume 6, Issue 1, 2023, Pages:54-66

ISSN: 2636-7467 (Online)

www.journalmim.com

SOME CHARACTERIZATIONS OF QUASI-EINSTEIN AND TWISTED

PRODUCT MANIFOLDS
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Abstract. We first consider quasi-Einstein manifolds with concircular generator vector

field. Secondly, we get a result for a twisted product alternative to a result of Ponge-

Reckziegel [13]. Then we study quasi-Einstein manifolds on twisted product structures. In

particular, we examine the effect of the condition of quasi-Einstein on a twisted product to

its factor manifolds. Also, we obtain some conditions for a twisted product satisfying the

quasi-Einstein condition to be a warped or a direct product.
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1. Introduction

The concept of warped product of Riemannian manifolds [3] is a generalization of the direct

product of Riemannian manifolds and plays a very important role in physics, as well as in

differential geometry, especially in the theory of relativity. Indeed, the standard space-time

models such as Robertson-Walker, Schwarzschild, static and Kruskal, are warped products.

Also, the simplest models of neighborhoods of stars and black holes are warped products

[12]. Moreover, some solutions to Einstein’s field equation can be written in terms of warped

products [1].
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On the other hand, there is an important notion known as Einstein manifold [2], which

has a central place in both mathematics and physics. Indeed, Einstein manifolds are not

only interesting themselves, but they are also related to many important topics of differen-

tial geometry such as Riemannian submersions, homogenous Riemannian spaces, Yang-Mills

theory, self-dual manifolds of dimension four, holonomy groups, etc.

In this paper, we study twisted products and quasi-Einstein manifolds, which are gener-

alizations of both of the two concepts mentioned above.

2. Preliminaries

2.1. Twisted products. Let M1 and M2 be two Riemannian manifolds endowed with the

Riemannian metric tensors g1 and g2 and let f be a positive smooth function defined on

M1 × M2. Denote by π1 and π2 the canonical projections of M1 × M2 onto M1 and M2,

respectively. Then the twisted product [7] M1 ×f M2 of (M1, g1) and (M2, g2) is the product

manifold M := M1 ×M2 equipped with metric g given by

g = π∗
1(g1)⊕ f2π∗

2(g2), (2.1)

where π∗
i (gi) is the pullback of gi via πi for i ∈ {1, 2}. Then the function f is called the

twisting function of the twisted product M1×f M2 = (M, g). If f only depends on the points

of M1, then we get a warped product [3] and if f is a constant, then we get a direct product

manifold [8].

LetM1×fM2 be a twisted product manifold with the Levi-Civita connection∇ and denote

by ∇i the Levi-Civita connection of Mi for i ∈ {1, 2}. By usual convenience, we denote the

set of lifts of vector fields on Mi by L(Mi) and use the same notation for a vector field and

for its lift. On the other hand, π1 is an isometry and π2 is a (positive) homothety, so they

preserve the Levi-Civita connection. Thus, there is no confusion using the same notation for

a connection on Mi and for its pullback via πi. Then, the covariant derivative formulas of

twisted product manifold are given by the following.
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Lemma 2.1. [7] Let M1 ×f M2 be a twisted product manifold. Then for X,Y ∈ L(M1) and

U, V ∈ L(M2), we have

∇XY = ∇1
XY , (2.2)

∇XV = ∇V X = X(k)V, (2.3)

∇UV = ∇2
UV + U(k)V + V (k)U − g(U, V )∇k, (2.4)

where k = ln f and ∇k is the gradient of the function k.

The manifold {p}×M2 is called a fiber of the twisted product and the manifold M1×{q}

is called a base manifold of M1 ×f M2, where p ∈ M1 and q ∈ M2. The base manifold is

totally geodesic and the fiber is totally umbilical in M1 ×f M2.

As in [10], we define hk1(X,Y ) = XY (k)−(∇1
XY )(k) for all X,Y ∈ L(M1) and hk2(U, V ) =

UV (k)− (∇2
UV )(k) for all U, V ∈ L(M2). Then the Hessian form hk of k on (M, g) satisfies

hk(X,Y ) = hk1(X,Y ), (2.5)

hk(U, V ) = hk2(U, V )− 2U(k)V (k) + g(U, V )g(∇k,∇k). (2.6)

Let 1R and 2R be the lifts of Riemann curvature tensors of (M1, g1) and (M2, g2), respec-

tively and let R be the Riemann curvature tensor of the twisted product M1 ×f M2. Then,

by direct computations and using (2.2)–(2.4), we have the following relations.

Lemma 2.2. Let X,Y, Z ∈ L(M1) and U, V,W ∈ L(M2). Then, we have

RXY Z = 1R(X,Y )Z, (2.7)

RXY U = 0, (2.8)

RUV X = UX(k)V − V X(k)U, (2.9)

RXUY =

(
hk1(X,Y ) +X(k)Y (k)

)
U, (2.10)

RUXV = −XV (k)U +

(
X(k)∇k +Hk(X)

)
g(U, V ), (2.11)

RUV W = 2R(U, V )W −
(
hk2(V,W )−W (k)V (k)

)
U

+

(
hk2(U,W )−W (k)U(k)

)
V

−
(
Hk(U) + U(k)∇k

)
g(V,W )+

(
Hk(V ) + V (k)∇k

)
g(U,W ), (2.12)
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where Hk is the Hessian tensor of k on M1×f M2, i.e., H
k(E) = ∇E∇k for any vector field

E on M1 ×f M2.

Next, let 1Ric and 2Ric be the lifts of Ricci curvature tensors of (M1, g1) and (M2, g2),

respectively and let Ric be the Ricci curvature tensor of the twisted product M1 ×f M2.

Then, by direct computations and using (2.5)–(2.12), we have the following relations.

Lemma 2.3. Let X,Y ∈ L(M1) and U, V ∈ L(M2). Then, we have

Ric(X,Y ) = 1Ric(X,Y )−m2

(
hk1(X,Y ) +X(k)Y (k)

)
, (2.13)

Ric(X,U) = −(m2 − 1)XU(k), (2.14)

Ric(U, V ) = 2Ric(U, V )− (m2 − 2)hk2(U, V )

+ (m2 − 2)U(k)V (k)− g(U, V )∆k, (2.15)

where ∆k is the Laplacian of k on M1 ×f M2 and mi = dim(Mi).

2.2. Quasi-Einstein Manifolds. A Riemannian manifold (Mm, g), m ≥ 2, is said to be an

Einstein manifold [2] if its Ricci tensor Ric satisfies the condition Ric = τ
mg, where τ denotes

the scalar curvature of M . A non-flat Riemannian manifold (M, g), m ≥ 2, is said to be a

quasi-Einstein manifold [6] if the Ricci tensor field of M satisfies

Ric = αg + βA⊗A, (2.16)

where α and β are scalar functions on M with β ̸= 0 and A is non-zero 1-form such that

g(X, ξ) = A(X) for every vector field X on M , ξ being a unitary vector field which is called

the generator of the manifold M. Note that if β = 0, then the manifold reduces to an Einstein

manifold.

Remark 2.1. In what follows, we shall use this notion in a slightly enlarged sense, allowing

for the non-zero vector field ξ to be non-unitary. Notice also that quasi-Einstein manifolds

coincide with trivial almost η-Ricci solitons [4], i.e., almost η-Ricci solitons with Killing

potential vector field.

3. Main Results

Let (Mm, g), m ≥ 3, be a quasi-Einstein manifold with associated scalar functions α and

β and the generator vector field ξ. By a contraction from (2.16), we have

τ = mα+ β|ξ|2, (3.17)
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where τ is the scalar curvature of M. By taking the gradient of (3.17), we obtain

∇τ = m∇α+ |ξ|2∇β + β∇(|ξ|2). (3.18)

Now, by taking the divergence of (2.16) for any vector field X on M, we have

div(Ric)(X) = g

(
∇α+ β∇ξξ + ξ(β)ξ + β div(ξ)ξ,X

)
.

Using the Schur’s Lemma, i.e., dτ = 2div(Ric) and (3.18), we obtain

(m− 2)∇α = 2β∇ξξ + 2

(
ξ(β) + β div(ξ)

)
ξ. (3.19)

Now, we suppose that ξ is a concircular vector field [11], i.e., ∇Zξ = aZ for any vector field

Z on M , with a a smooth function on M . Then, we have div(ξ) = ma and the equation

(3.19) becomes

(m− 2)∇α = 2

(
ξ(β) + (m+ 1)aβ

)
ξ. (3.20)

On the other hand, upon direct computations, we find

R(X,Y )ξ = X(a)Y − Y (a)X

for any vector fields X and Y on M and so, we deduce that

Ric(ξ, ξ) = −(m− 1)ξ(a). (3.21)

But the equation (2.16) gives

Ric(ξ, ξ) = α|ξ|2 + β|ξ|4. (3.22)

From (3.21) and (3.22), we deduce that −(m− 1)ξ(a) = |ξ|2(α+ β|ξ|2) and so

α = −m−1
|ξ|2 ξ(a)− β|ξ|2. (3.23)

Assume now that a is constant. Using (3.23) in (3.20), we get

−(m− 3)

(
β∇(|ξ|2) + |ξ|2∇β

)
= 2

(
ξ(β) + (m+ 1)aβ

)
ξ. (3.24)

Taking the inner product of (3.24) with ξ, we get

−(m− 3)βξ(|ξ|2) = (m− 1)|ξ|2ξ(β) + 2(m+ 1)aβ|ξ|2. (3.25)

Since ξ(|ξ|2) = 2a|ξ|2, from (3.25), we find

ξ(β) = −4aβ.
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Finally, using (3.18), we arrive to

∇τ = −(m− 1)

(
β∇(|ξ|2) + |ξ|2∇β

)
(3.26)

and by taking the inner product of (3.26) with ξ, we find

ξ(τ) = −2(m− 1)aβ|ξ|2.

On the other hand, if ξ is of constant length, then a = 0 and ∇α = −|ξ|2∇β, which is

combined with (3.20) to obtain

−(m− 2)|ξ|2∇β = 2ξ(β)ξ (3.27)

and by taking the inner product of (3.27), we get ξ(β) = 0, hence ξ(α) = 0.

Therefore, we get the following two results.

Theorem 3.1. Let (Mm, g), m ≥ 3, be a quasi-Einstein manifold with associated scalar

functions α and β and the generator vector field ξ such that ξ is concircular with a constant.

If β is constant, then ξ is ∇-parallel or M is a Ricci-flat manifold.

Theorem 3.2. Let (Mm, g), m ≥ 3, be a quasi-Einstein manifold with associated scalar

functions α and β and the generator vector field ξ such that ξ is concircular. If ξ is of

constant length, then ξ is ∇-parallel and the functions α and β are constant along the integral

curves of ξ.

Now we give a new characterization for twisted products.

Theorem 3.3. Let (M, g) be a pseudo-Riemannian manifold and let F1 and F2 be the canon-

ical foliations on M . Suppose that F1 and F2 intersect perpendicularly everywhere. Then

M is a locally twisted product M1 ×f M2 with a twisting function f if and only if for any

W ∈ L(M2), we have

LW g = 0 on M1 (3.28)

and there exists a smooth function µ on M such that for any Z ∈ L(M1), we have

LZg = 2Z(µ)g on M2, (3.29)

where LW is the Lie derivative with respect to W and M1 (resp. M2) is the integral manifold

of F1 (resp. F2).
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Proof. Let M1 ×f M2 be a twisted product with the metric g. Then using the Lie

derivative formula for any X,Y, Z ∈ L(M1) and U, V,W ∈ L(M2), we have

(LW g)(X,Y ) = −2g(σ1(X,Y ),W ) (3.30)

and

(LZg)(U, V ) = −2g(σ2(U, V ), Z), (3.31)

where σ1 (resp. σ2) denotes the second fundamental form of F1 (resp. F2), (e.g. see [5], p.

195). Hence, using (2.2), we get

(LW g)(X,Y ) = 0

from (3.30) and we get (3.28). Next, using (2.4), we get

(LZg)(U, V ) = −2g

(
− g(U, V )P1∇(ln f), Z

)
(3.32)

from (3.31), where Pi : L(M1 × M2) → L(Mi) for i ∈ {1, 2}. By a direct computation, we

obtain

(LZg)(U, V ) = 2Z(ln f)g(U, V )

from (3.32). Thus, we get (3.29) for µ = ln f .

Conversely, suppose that the conditions (3.28) and (3.29) hold. Then for any X,Y ∈

L(M1) and W ∈ L(M2), using (3.28) and (3.30), we get g(σ1(X,Y ),W ) = 0. It follows that

σ1(X,Y ) = 0 for all X,Y ∈ L(M1) and so F1 is totally geodesic. On the other hand for any

Z ∈ L(M1) and U, V ∈ L(M2), using (3.29) and (3.31), we have

−2g(σ2(U, V ), Z) = 2Z(µ)g(U, V ).

After a straightforward computation, we get

g(σ2(U, V ), Z) = g

(
− g(U, V )∇µ, Z

)
.

It follows that σ2(U, V ) = −g(U, V )P1∇µ for all U, V ∈ L(M2). Thus, F2 is totally umbilical

with the mean curvature vector field −P1∇µ. Therefore, it follows from Proposition 3(b) of

[13] that M is a locally twisted product M1 ×f M2 with f = eµ and M1 (resp. M2) is the

integral manifold of F1 (resp. F2). □
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Remark 3.1. Let {e1, ..., em1 , ω1, ..., ωm2} be an orthonormal basis of the twisted product

M1 ×f M2, where {e1, ..., em1} are tangent to M1 and {ω1, ..., ωm2} are tangent to M2. Then

by (2.1), we see that {e1, ..., em1} is an orthonormal basis of (M1, g1) and {fω1, ..., fωm2} is

an orthonormal basis of (M2, g2).

Let ∆1 and ∆2 be the lifts of Laplacian operators on (M1, g1) and (M2, g2), respectively

and let ∆ be the Laplacian operator on the twisted product M1 ×f M2. In view of Remark

3.1 and using (2.5) and (2.6), we get

∆k = ∆1k +
1

f2
∆2k +m2g(∇k,∇k)− 2g(P2∇k, P2∇k).

Notice that for m2 ≥ 2, we have m2g(∇k,∇k)− 2g(P2∇k, P2∇k) ≥ 0. Moreover, we have

∆1k = ∆k − 1

f2
∆2k −

(
m2g(∇k,∇k)− 2g(P2∇k, P2∇k)

)
and

∆2k = f2

(
∆k −∆1k −

(
m2g(∇k,∇k)− 2g(P2∇k, P2∇k)

))
.

Also ∆k = 0 if and only if

∆1k = − 1

f2
∆2k −

(
m2g(∇k,∇k)− 2g(P2∇k, P2∇k)

)
.

If ∆2k ≥ 0, then ∆1k ≤ 0, and by Hopf’s Lemma we deduce that k = ln f is constant on

both M2 and M1.

Therefore, we get the following result.

Proposition 3.1. Let M1 ×f M2 be a twisted product manifold with harmonic function

k = ln f with respect to ∆ and m2 ≥ 2. If ∆2k ≥ 0, then ∆1k ≤ 0. As a consequence, the

twisted product manifold is a direct product.

Similarly, we obtain the following.

Proposition 3.2. Let M1 ×f M2 be a twisted product manifold with harmonic function

k = ln f with respect to ∆ and m2 ≥ 2. If ∆1k ≥ 0, then ∆2k ≤ 0. As a consequence, the

twisted product manifold is a direct product.

Next, we shall examine the condition of quasi-Einstein on a twisted product to its factor

manifolds.
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Theorem 3.4. Let M1 ×f M2 be a twisted product manifold. Then it is a quasi-Einstein

manifold with associated scalar functions α and β and 1-form A if and only if the followings

hold:

(a) 1Ric = αg1 + βÃ⊗ Ã+m2d̃k ⊗ d̃k +m2h
k
1, where Ã = A|M1 and d̃k = dk|M1,

(b) 2Ric = f2(α+∆k)g2 + (m2 − 2)hk2 − (m2 − 2)d̃k ⊗ d̃k + βf4Ã⊗ Ã, where

Ã = A|M2 and d̃k = dk|M2 ,

(c) We have −(m2 − 1)XV (k) = βA(X)A(V ) for any X ∈ L(M1) and V ∈ L(M2).

Proof. On M1, we have

αg + βA⊗A = 1Ric−m2h
k
1 −m2dk ⊗ dk

from (2.13) and (2.16). By using (2.1) and (2.5), we obtain

1Ric = αg1 + βÃ⊗ Ã+m2d̃k ⊗ d̃k +m2h
k
1,

where Ã = A|M1 and d̃k = dk|M1 , as desired.

Similarly, on M2, we have

αg + βA⊗A = 2Ric− (m2 − 2)hk2 + (m2 − 2)dk ⊗ dk −∆kg

from (2.15) and (2.16). By using (2.1), we obtain

2Ric = f2(α+∆k)g2 + (m2 − 2)hk2 − (m2 − 2)d̃k ⊗ d̃k + βf4Ã⊗ Ã,

where Ã = A|M2 and d̃k = dk|M2 , as desired. On the other hand, from (2.14) and (2.16), we

easily get (3). The converse is just a verification. □

Theorem 3.5. Let M1 ×f M2 be a twisted product quasi-Einstein manifold with associated

scalar functions α and β. If the generator vector field ξ is tangent to the base manifold M1,

then the Ricci tensors of M1 and M2 satisfy the following equations

1Ric(X,Y ) = αg1(X,Y ) +m2

(
hk1(X,Y ) +X(k)Y (k)

)
+ βg1(X, ξ)g1(Y, ξ), (3.33)

2Ric(U, V ) = f2g2(U, V )(α+∆k)+(m2 − 2)hk2(U, V )− (m2 − 2)U(k)V (k), (3.34)

where X,Y ∈ L(M1) and U, V ∈ L(M2).
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Proof. For any X,Y ∈ L(M1), using (2.1) and (2.16), we have

Ric(X,Y ) = αg1(X,Y ) + βg1(X, ξ)g1(Y, ξ).

By (2.13), we get (3.33).

Similarly for any U, V ∈ L(M2), using (2.1) and (2.16), we have

Ric(U, V ) = αf2g2(U, V ),

since g(U, ξ) = 0. By (2.15), we get (3.34). □

Let 1τ and 2τ be the lifts of scalar curvatures of (M1, g1) and (M2, g2), respectively and

let τ be the scalar curvature of the twisted product M1 ×f M2. In view of Theorem 3.5 and

Remark 3.1, we obtain the following.

Corollary 3.1. Let M1×fM2 be a twisted product quasi-Einstein manifold with the associated

scalar functions α and β. If the generator vector field ξ is tangent to the base manifold M1,

then, we have

τ = (m1 +m2)α+ β|ξ|2,

1τ = m1α+ β|ξ|2 +m2∆
1k +m2g1(∇k,∇k), (3.35)

2τ = m2f
2(α+∆k) + (m2 − 2)∆2k − (m2 − 2)f4g2(∇k,∇k), (3.36)

where ∆i is the Laplacian operator on (Mi, gi) for i ∈ {1, 2}.

Theorem 3.6. Let M1 ×f M2 be a twisted product quasi-Einstein manifold with associated

scalar functions α and β. If the generator vector field ξ is tangent to the fiber manifold M2,

then the Ricci tensors of M1 and M2 satisfy the following equations

1Ric(X,Y ) = αg1(X,Y ) +m2

(
hk1(X,Y ) +X(k)Y (k)

)
, (3.37)

2Ric(U, V ) = f2g2(U, V )(α+∆k) + (m2 − 2)hk2(U, V )

− (m2 − 2)U(k)V (k) + βf4g2(U, ξ)g2(V, ξ), (3.38)

where X,Y ∈ L(M1) and U, V ∈ L(M2).

Proof. For any X,Y ∈ L(M1), using (2.1) and (2.16), we have

Ric(X,Y ) = αg1(X,Y ),
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since g(X, ξ) = 0. By (2.13), we get (3.37).

Similarly, for any U, V ∈ L(M2), using (2.1) and (2.16), we have

Ric(U, V ) = αf2g2(U, V ) + βf4g2(U, ξ)g2(V, ξ).

By using (2.15), we get (3.38). □

In view of Theorem 3.6 and Remark 3.1, we obtain the following.

Corollary 3.2. Let M1×fM2 be a twisted product quasi-Einstein manifold with the associated

scalar functions α and β. If the generator vector field ξ is tangent to the fiber manifold M2,

then, we have

τ = (m1 +m2)α+ β|ξ|2,

1τ = m1α+m2∆
1k +m2g1(∇k,∇k), (3.39)

2τ = m2f
2(α+∆k) + (m2 − 2)∆2k − (m2 − 2)f4g2(∇k,∇k) + βf4|ξ|2. (3.40)

Finally, motivated by the results of [9] on warped product quasi-Einstein manifolds, we

obtain the following results for twisted product quasi-Einstein manifolds.

Theorem 3.7. Let M1 ×f M2 be a twisted product quasi-Einstein manifold with associated

positive scalar functions α and β such that the generator vector field ξ tangent to M1. If M1

is compact and 1τ = 0, then the twisted product manifold is a direct product.

Proof. We have

m2∆
1k = −m1α− β|ξ|2 −m2g1(∇k,∇k)

from (3.35). Under the given hypothesis, it follows that ∆1k ≤ 0. Namely, ∆1k has constant

sign on M1. By Hopf’s Lemma, the function k = ln f is constant on M1, since M1 is

compact. Therefore, the twisting function f only depends on the points of M2. Thus, the

twisted product manifold is a direct product of (M1, g1) and (M2, g̃2), where g̃2 = f2g2. □

Similarly, with the help of (3.39), we obtain the following result.

Theorem 3.8. Let M1 ×f M2 be a twisted product quasi-Einstein manifold with associated

scalar functions α and β such that the generator vector field ξ tangent to M2 and α ≥ 0. If

M1 is compact and 1τ = 0, then the twisted product manifold is a direct product.
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Theorem 3.9. Let M1 ×f M2 be a twisted product quasi-Einstein manifold with associated

scalar functions α and β such that the generator vector field ξ tangent to M1 and α+∆k ≤ 0.

If M2 is compact, 2τ = 0 and m2 ≥ 3, then the twisted product manifold is a warped product.

Proof. We have

(m2 − 2)∆2k = −m2f
2(α+∆k) + (m2 − 2)f4g2(∇k,∇k)

from (3.36). Under the given hypothesis, it follows that ∆2k ≥ 0. Namely, ∆2k has constant

sign on M2. By Hopf’s Lemma, the function k = ln f is constant on M2, since M2 is

compact. Therefore, the twisting function f only depends on the points of M1. Thus, the

twisted product manifold is a warped product of (M1, g1) and (M2, g2). □

Similarly, with the help of (3.40), we obtain the following result.

Theorem 3.10. Let M1 ×f M2 be a twisted product quasi-Einstein manifold with associated

positive scalar functions α and β such that the generator vector field ξ tangent to M2 and

α+∆k ≤ 0, β < 0. If M2 is compact, 2τ = 0 and m2 ≥ 3, then the twisted product manifold

is a warped product.
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